Documentation

Mathlib.Algebra.Exact

Exactness of a pair #

TODO : #

def Function.Exact {M : Type u_1} {N : Type u_2} {P : Type u_3} (f : MN) (g : NP) [Zero P] :

The maps f and g form an exact pair : g y = 0 iff y belongs to the image of f

Equations
Instances For
    theorem Function.Exact.comp_eq_zero {M : Type u_1} {N : Type u_2} {P : Type u_3} (f : MN) (g : NP) [Zero P] (h : Function.Exact f g) :
    g f = 0
    theorem Function.Exact.linearMap_ker_eq {M : Type u_1} {N : Type u_2} {P : Type u_3} {R : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (hfg : Function.Exact f g) :
    theorem Function.LinearMap.exact_iff {M : Type u_1} {N : Type u_2} {P : Type u_3} {R : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} :
    theorem Function.Exact.linearMap_comp_eq_zero {M : Type u_1} {N : Type u_2} {P : Type u_3} {R : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Function.Exact f g) :
    g ∘ₗ f = 0