Documentation

Mathlib.Algebra.GroupPower.Lemmas

Lemmas about power operations on monoids and groups #

This file contains lemmas about Monoid.pow, Group.pow, nsmul, and zsmul which require additional imports besides those available in Mathlib.Algebra.GroupPower.Basic.

(Additive) monoid #

@[simp]
theorem nsmul_one {A : Type y} [AddMonoidWithOne A] (n : ) :
n 1 = n
instance invertiblePow {M : Type u} [Monoid M] (m : M) [Invertible m] (n : ) :
Equations
theorem invOf_pow {M : Type u} [Monoid M] (m : M) [Invertible m] (n : ) [Invertible (m ^ n)] :
(m ^ n) = m ^ n
theorem IsAddUnit.nsmul {M : Type u} [AddMonoid M] {m : M} (n : ) :
IsAddUnit mIsAddUnit (n m)
abbrev IsAddUnit.nsmul.match_1 {M : Type u_1} [AddMonoid M] {m : M} (motive : IsAddUnit mProp) :
∀ (x : IsAddUnit m), (∀ (u : AddUnits M) (hu : u = m), motive (_ : ∃ (u : AddUnits M), u = m))motive x
Equations
  • (_ : motive x) = (_ : motive x)
Instances For
    theorem IsUnit.pow {M : Type u} [Monoid M] {m : M} (n : ) :
    IsUnit mIsUnit (m ^ n)
    def AddUnits.ofNSMul {M : Type u} [AddMonoid M] (u : AddUnits M) (x : M) {n : } (hn : n 0) (hu : n x = u) :

    If a natural multiple of x is an additive unit, then x is an additive unit.

    Equations
    Instances For
      theorem AddUnits.ofNSMul.proof_2 {M : Type u_1} [AddMonoid M] (x : M) {n : } :
      AddCommute x ((n - 1) x)
      theorem AddUnits.ofNSMul.proof_1 {M : Type u_1} [AddMonoid M] (u : AddUnits M) (x : M) {n : } (hn : n 0) (hu : n x = u) :
      x + (n - 1) x = u
      def Units.ofPow {M : Type u} [Monoid M] (u : Mˣ) (x : M) {n : } (hn : n 0) (hu : x ^ n = u) :

      If a natural power of x is a unit, then x is a unit.

      Equations
      Instances For
        abbrev isAddUnit_nsmul_iff.match_1 {M : Type u_1} [AddMonoid M] {a : M} {n : } (motive : IsAddUnit (n a)Prop) :
        ∀ (x : IsAddUnit (n a)), (∀ (u : AddUnits M) (hu : u = n a), motive (_ : ∃ (u : AddUnits M), u = n a))motive x
        Equations
        • (_ : motive x) = (_ : motive x)
        Instances For
          @[simp]
          theorem isAddUnit_nsmul_iff {M : Type u} [AddMonoid M] {a : M} {n : } (hn : n 0) :
          @[simp]
          theorem isUnit_pow_iff {M : Type u} [Monoid M] {a : M} {n : } (hn : n 0) :
          IsUnit (a ^ n) IsUnit a
          theorem isAddUnit_nsmul_succ_iff {M : Type u} [AddMonoid M] {m : M} {n : } :
          theorem isUnit_pow_succ_iff {M : Type u} [Monoid M] {m : M} {n : } :
          IsUnit (m ^ (n + 1)) IsUnit m
          def AddUnits.ofNSMulEqZero {M : Type u} [AddMonoid M] (x : M) (n : ) (hx : n x = 0) (hn : n 0) :

          If n • x = 0, n ≠ 0, then x is an additive unit.

          Equations
          Instances For
            @[simp]
            theorem Units.val_ofPowEqOne {M : Type u} [Monoid M] (x : M) (n : ) (hx : x ^ n = 1) (hn : n 0) :
            (Units.ofPowEqOne x n hx hn) = x
            @[simp]
            theorem Units.val_inv_ofPowEqOne {M : Type u} [Monoid M] (x : M) (n : ) (hx : x ^ n = 1) (hn : n 0) :
            (Units.ofPowEqOne x n hx hn)⁻¹ = x ^ (n - 1)
            @[simp]
            theorem AddUnits.val_neg_ofNSMulEqZero {M : Type u} [AddMonoid M] (x : M) (n : ) (hx : n x = 0) (hn : n 0) :
            (-AddUnits.ofNSMulEqZero x n hx hn) = (n - 1) x
            @[simp]
            theorem AddUnits.val_ofNSMulEqZero {M : Type u} [AddMonoid M] (x : M) (n : ) (hx : n x = 0) (hn : n 0) :
            (AddUnits.ofNSMulEqZero x n hx hn) = x
            def Units.ofPowEqOne {M : Type u} [Monoid M] (x : M) (n : ) (hx : x ^ n = 1) (hn : n 0) :

            If x ^ n = 1, n ≠ 0, then x is a unit.

            Equations
            Instances For
              @[simp]
              theorem AddUnits.nsmul_ofNSMulEqZero {M : Type u} [AddMonoid M] {x : M} {n : } (hx : n x = 0) (hn : n 0) :
              @[simp]
              theorem Units.pow_ofPowEqOne {M : Type u} [Monoid M] {x : M} {n : } (hx : x ^ n = 1) (hn : n 0) :
              Units.ofPowEqOne x n hx hn ^ n = 1
              theorem isAddUnit_ofNSMulEqZero {M : Type u} [AddMonoid M] {x : M} {n : } (hx : n x = 0) (hn : n 0) :
              theorem isUnit_ofPowEqOne {M : Type u} [Monoid M] {x : M} {n : } (hx : x ^ n = 1) (hn : n 0) :
              def invertibleOfPowEqOne {M : Type u} [Monoid M] (x : M) (n : ) (hx : x ^ n = 1) (hn : n 0) :

              If x ^ n = 1 then x has an inverse, x^(n - 1).

              Equations
              Instances For
                theorem smul_pow {M : Type u} {N : Type v} [Monoid M] [Monoid N] [MulAction M N] [IsScalarTower M N N] [SMulCommClass M N N] (k : M) (x : N) (p : ) :
                (k x) ^ p = k ^ p x ^ p
                @[simp]
                theorem smul_pow' {M : Type u} {N : Type v} [Monoid M] [Monoid N] [MulDistribMulAction M N] (x : M) (m : N) (n : ) :
                x m ^ n = (x m) ^ n
                @[simp]
                theorem zsmul_one {A : Type y} [AddGroupWithOne A] (n : ) :
                n 1 = n
                abbrev mul_zsmul'.match_1 (motive : Prop) :
                ∀ (x x_1 : ), (∀ (m n : ), motive (Int.ofNat m) (Int.ofNat n))(∀ (m n : ), motive (Int.ofNat m) (Int.negSucc n))(∀ (m n : ), motive (Int.negSucc m) (Int.ofNat n))(∀ (m n : ), motive (Int.negSucc m) (Int.negSucc n))motive x x_1
                Equations
                • (_ : motive x✝ x) = (_ : motive x✝ x)
                Instances For
                  theorem mul_zsmul' {α : Type u_1} [SubtractionMonoid α] (a : α) (m : ) (n : ) :
                  (m * n) a = n m a
                  theorem zpow_mul {α : Type u_1} [DivisionMonoid α] (a : α) (m : ) (n : ) :
                  a ^ (m * n) = (a ^ m) ^ n
                  theorem mul_zsmul {α : Type u_1} [SubtractionMonoid α] (a : α) (m : ) (n : ) :
                  (m * n) a = m n a
                  theorem zpow_mul' {α : Type u_1} [DivisionMonoid α] (a : α) (m : ) (n : ) :
                  a ^ (m * n) = (a ^ n) ^ m
                  theorem bit0_zsmul {α : Type u_1} [SubtractionMonoid α] (a : α) (n : ) :
                  bit0 n a = n a + n a
                  abbrev bit0_zsmul.match_1 (motive : Prop) :
                  ∀ (x : ), (∀ (n : ), motive (Int.ofNat n))(∀ (n : ), motive (Int.negSucc n))motive x
                  Equations
                  • (_ : motive x) = (_ : motive x)
                  Instances For
                    theorem zpow_bit0 {α : Type u_1} [DivisionMonoid α] (a : α) (n : ) :
                    a ^ bit0 n = a ^ n * a ^ n
                    theorem bit0_zsmul' {α : Type u_1} [SubtractionMonoid α] (a : α) (n : ) :
                    bit0 n a = n (a + a)
                    theorem zpow_bit0' {α : Type u_1} [DivisionMonoid α] (a : α) (n : ) :
                    a ^ bit0 n = (a * a) ^ n
                    @[simp]
                    theorem zpow_bit0_neg {α : Type u_1} [DivisionMonoid α] [HasDistribNeg α] (x : α) (n : ) :
                    (-x) ^ bit0 n = x ^ bit0 n
                    abbrev add_one_zsmul.match_1 (motive : Prop) :
                    ∀ (x : ), (∀ (n : ), motive (Int.ofNat n))(Unitmotive (Int.negSucc 0))(∀ (n : ), motive (Int.negSucc (Nat.succ n)))motive x
                    Equations
                    • (_ : motive x) = (_ : motive x)
                    Instances For
                      theorem add_one_zsmul {G : Type w} [AddGroup G] (a : G) (n : ) :
                      (n + 1) a = n a + a
                      theorem zpow_add_one {G : Type w} [Group G] (a : G) (n : ) :
                      a ^ (n + 1) = a ^ n * a
                      theorem sub_one_zsmul {G : Type w} [AddGroup G] (a : G) (n : ) :
                      (n - 1) a = n a + -a
                      theorem zpow_sub_one {G : Type w} [Group G] (a : G) (n : ) :
                      a ^ (n - 1) = a ^ n * a⁻¹
                      theorem add_zsmul {G : Type w} [AddGroup G] (a : G) (m : ) (n : ) :
                      (m + n) a = m a + n a
                      theorem zpow_add {G : Type w} [Group G] (a : G) (m : ) (n : ) :
                      a ^ (m + n) = a ^ m * a ^ n
                      theorem add_zsmul_self {G : Type w} [AddGroup G] (b : G) (m : ) :
                      b + m b = (m + 1) b
                      theorem mul_self_zpow {G : Type w} [Group G] (b : G) (m : ) :
                      b * b ^ m = b ^ (m + 1)
                      theorem add_self_zsmul {G : Type w} [AddGroup G] (b : G) (m : ) :
                      m b + b = (m + 1) b
                      theorem mul_zpow_self {G : Type w} [Group G] (b : G) (m : ) :
                      b ^ m * b = b ^ (m + 1)
                      theorem sub_zsmul {G : Type w} [AddGroup G] (a : G) (m : ) (n : ) :
                      (m - n) a = m a + -(n a)
                      theorem zpow_sub {G : Type w} [Group G] (a : G) (m : ) (n : ) :
                      a ^ (m - n) = a ^ m * (a ^ n)⁻¹
                      theorem one_add_zsmul {G : Type w} [AddGroup G] (a : G) (i : ) :
                      (1 + i) a = a + i a
                      theorem zpow_one_add {G : Type w} [Group G] (a : G) (i : ) :
                      a ^ (1 + i) = a * a ^ i
                      theorem zsmul_add_comm {G : Type w} [AddGroup G] (a : G) (i : ) (j : ) :
                      i a + j a = j a + i a
                      theorem zpow_mul_comm {G : Type w} [Group G] (a : G) (i : ) (j : ) :
                      a ^ i * a ^ j = a ^ j * a ^ i
                      theorem bit1_zsmul {G : Type w} [AddGroup G] (a : G) (n : ) :
                      bit1 n a = n a + n a + a
                      theorem zpow_bit1 {G : Type w} [Group G] (a : G) (n : ) :
                      a ^ bit1 n = a ^ n * a ^ n * a
                      theorem zsmul_induction_left {G : Type w} [AddGroup G] {g : G} {P : GProp} (h_one : P 0) (h_mul : ∀ (a : G), P aP (g + a)) (h_inv : ∀ (a : G), P aP (-g + a)) (n : ) :
                      P (n g)

                      To show a property of all multiples of g it suffices to show it is closed under addition by g and -g on the left. For additive subgroups generated by more than one element, see AddSubgroup.closure_induction_left.

                      theorem zpow_induction_left {G : Type w} [Group G] {g : G} {P : GProp} (h_one : P 1) (h_mul : ∀ (a : G), P aP (g * a)) (h_inv : ∀ (a : G), P aP (g⁻¹ * a)) (n : ) :
                      P (g ^ n)

                      To show a property of all powers of g it suffices to show it is closed under multiplication by g and g⁻¹ on the left. For subgroups generated by more than one element, see Subgroup.closure_induction_left.

                      theorem zsmul_induction_right {G : Type w} [AddGroup G] {g : G} {P : GProp} (h_one : P 0) (h_mul : ∀ (a : G), P aP (a + g)) (h_inv : ∀ (a : G), P aP (a + -g)) (n : ) :
                      P (n g)

                      To show a property of all multiples of g it suffices to show it is closed under addition by g and -g on the right. For additive subgroups generated by more than one element, see AddSubgroup.closure_induction_right.

                      theorem zpow_induction_right {G : Type w} [Group G] {g : G} {P : GProp} (h_one : P 1) (h_mul : ∀ (a : G), P aP (a * g)) (h_inv : ∀ (a : G), P aP (a * g⁻¹)) (n : ) :
                      P (g ^ n)

                      To show a property of all powers of g it suffices to show it is closed under multiplication by g and g⁻¹ on the right. For subgroups generated by more than one element, see Subgroup.closure_induction_right.

                      zpow/zsmul and an order #

                      Those lemmas are placed here (rather than in Mathlib.Algebra.GroupPower.Order with their friends) because they require facts from Mathlib.Data.Int.Basic.

                      theorem zsmul_pos {α : Type u_1} [OrderedAddCommGroup α] {a : α} (ha : 0 < a) {k : } (hk : 0 < k) :
                      0 < k a
                      theorem one_lt_zpow' {α : Type u_1} [OrderedCommGroup α] {a : α} (ha : 1 < a) {k : } (hk : 0 < k) :
                      1 < a ^ k
                      theorem zsmul_strictMono_left {α : Type u_1} [OrderedAddCommGroup α] {a : α} (ha : 0 < a) :
                      StrictMono fun (n : ) => n a
                      theorem zpow_strictMono_right {α : Type u_1} [OrderedCommGroup α] {a : α} (ha : 1 < a) :
                      StrictMono fun (n : ) => a ^ n
                      theorem zsmul_mono_left {α : Type u_1} [OrderedAddCommGroup α] {a : α} (ha : 0 a) :
                      Monotone fun (n : ) => n a
                      theorem zpow_mono_right {α : Type u_1} [OrderedCommGroup α] {a : α} (ha : 1 a) :
                      Monotone fun (n : ) => a ^ n
                      theorem zsmul_le_zsmul {α : Type u_1} [OrderedAddCommGroup α] {m : } {n : } {a : α} (ha : 0 a) (h : m n) :
                      m a n a
                      theorem zpow_le_zpow {α : Type u_1} [OrderedCommGroup α] {m : } {n : } {a : α} (ha : 1 a) (h : m n) :
                      a ^ m a ^ n
                      theorem zsmul_lt_zsmul {α : Type u_1} [OrderedAddCommGroup α] {m : } {n : } {a : α} (ha : 0 < a) (h : m < n) :
                      m a < n a
                      theorem zpow_lt_zpow {α : Type u_1} [OrderedCommGroup α] {m : } {n : } {a : α} (ha : 1 < a) (h : m < n) :
                      a ^ m < a ^ n
                      theorem zsmul_le_zsmul_iff {α : Type u_1} [OrderedAddCommGroup α] {m : } {n : } {a : α} (ha : 0 < a) :
                      m a n a m n
                      theorem zpow_le_zpow_iff {α : Type u_1} [OrderedCommGroup α] {m : } {n : } {a : α} (ha : 1 < a) :
                      a ^ m a ^ n m n
                      theorem zsmul_lt_zsmul_iff {α : Type u_1} [OrderedAddCommGroup α] {m : } {n : } {a : α} (ha : 0 < a) :
                      m a < n a m < n
                      theorem zpow_lt_zpow_iff {α : Type u_1} [OrderedCommGroup α] {m : } {n : } {a : α} (ha : 1 < a) :
                      a ^ m < a ^ n m < n
                      theorem zsmul_strictMono_right (α : Type u_1) [OrderedAddCommGroup α] {n : } (hn : 0 < n) :
                      StrictMono fun (x : α) => n x
                      theorem zpow_strictMono_left (α : Type u_1) [OrderedCommGroup α] {n : } (hn : 0 < n) :
                      StrictMono fun (x : α) => x ^ n
                      theorem zsmul_mono_right (α : Type u_1) [OrderedAddCommGroup α] {n : } (hn : 0 n) :
                      Monotone fun (x : α) => n x
                      theorem zpow_mono_left (α : Type u_1) [OrderedCommGroup α] {n : } (hn : 0 n) :
                      Monotone fun (x : α) => x ^ n
                      theorem zsmul_le_zsmul' {α : Type u_1} [OrderedAddCommGroup α] {n : } {a : α} {b : α} (hn : 0 n) (h : a b) :
                      n a n b
                      theorem zpow_le_zpow' {α : Type u_1} [OrderedCommGroup α] {n : } {a : α} {b : α} (hn : 0 n) (h : a b) :
                      a ^ n b ^ n
                      theorem zsmul_lt_zsmul' {α : Type u_1} [OrderedAddCommGroup α] {n : } {a : α} {b : α} (hn : 0 < n) (h : a < b) :
                      n a < n b
                      theorem zpow_lt_zpow' {α : Type u_1} [OrderedCommGroup α] {n : } {a : α} {b : α} (hn : 0 < n) (h : a < b) :
                      a ^ n < b ^ n
                      theorem zsmul_le_zsmul_iff' {α : Type u_1} [LinearOrderedAddCommGroup α] {n : } (hn : 0 < n) {a : α} {b : α} :
                      n a n b a b
                      theorem zpow_le_zpow_iff' {α : Type u_1} [LinearOrderedCommGroup α] {n : } (hn : 0 < n) {a : α} {b : α} :
                      a ^ n b ^ n a b
                      theorem zsmul_lt_zsmul_iff' {α : Type u_1} [LinearOrderedAddCommGroup α] {n : } (hn : 0 < n) {a : α} {b : α} :
                      n a < n b a < b
                      theorem zpow_lt_zpow_iff' {α : Type u_1} [LinearOrderedCommGroup α] {n : } (hn : 0 < n) {a : α} {b : α} :
                      a ^ n < b ^ n a < b
                      theorem zsmul_right_injective {α : Type u_1} [LinearOrderedAddCommGroup α] {n : } (hn : n 0) :
                      Function.Injective fun (x : α) => n x

                      See also smul_right_injective. TODO: provide a NoZeroSMulDivisors instance. We can't do that here because importing that definition would create import cycles.

                      theorem zpow_left_injective {α : Type u_1} [LinearOrderedCommGroup α] {n : } (hn : n 0) :
                      Function.Injective fun (x : α) => x ^ n
                      theorem zsmul_right_inj {α : Type u_1} [LinearOrderedAddCommGroup α] {n : } {a : α} {b : α} (hn : n 0) :
                      n a = n b a = b
                      theorem zpow_left_inj {α : Type u_1} [LinearOrderedCommGroup α] {n : } {a : α} {b : α} (hn : n 0) :
                      a ^ n = b ^ n a = b
                      theorem zsmul_eq_zsmul_iff' {α : Type u_1} [LinearOrderedAddCommGroup α] {n : } {a : α} {b : α} (hn : n 0) :
                      n a = n b a = b

                      Alias of zsmul_right_inj, for ease of discovery alongside zsmul_le_zsmul_iff' and zsmul_lt_zsmul_iff'.

                      theorem zpow_eq_zpow_iff' {α : Type u_1} [LinearOrderedCommGroup α] {n : } {a : α} {b : α} (hn : n 0) :
                      a ^ n = b ^ n a = b

                      Alias of zsmul_right_inj, for ease of discovery alongside zsmul_le_zsmul_iff' and zsmul_lt_zsmul_iff'.

                      theorem abs_nsmul {α : Type u_1} [LinearOrderedAddCommGroup α] (n : ) (a : α) :
                      |n a| = n |a|
                      theorem abs_zsmul {α : Type u_1} [LinearOrderedAddCommGroup α] (n : ) (a : α) :
                      |n a| = |n| |a|
                      theorem abs_add_eq_add_abs_le {α : Type u_1} [LinearOrderedAddCommGroup α] {a : α} {b : α} (hle : a b) :
                      |a + b| = |a| + |b| 0 a 0 b a 0 b 0
                      theorem abs_add_eq_add_abs_iff {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) :
                      |a + b| = |a| + |b| 0 a 0 b a 0 b 0
                      @[simp]
                      theorem WithBot.coe_nsmul {A : Type y} [AddMonoid A] (a : A) (n : ) :
                      (n a) = n a
                      theorem nsmul_eq_mul' {R : Type u₁} [NonAssocSemiring R] (a : R) (n : ) :
                      n a = a * n
                      @[simp]
                      theorem nsmul_eq_mul {R : Type u₁} [NonAssocSemiring R] (n : ) (a : R) :
                      n a = n * a

                      Note that AddCommMonoid.nat_smulCommClass requires stronger assumptions on R.

                      Equations

                      Note that AddCommMonoid.nat_isScalarTower requires stronger assumptions on R.

                      Equations
                      @[simp]
                      theorem Nat.cast_pow {R : Type u₁} [Semiring R] (n : ) (m : ) :
                      (n ^ m) = n ^ m
                      theorem Int.coe_nat_pow (n : ) (m : ) :
                      (n ^ m) = n ^ m
                      theorem Int.natAbs_pow (n : ) (k : ) :
                      theorem bit0_mul {R : Type u₁} [NonUnitalNonAssocRing R] {n : R} {r : R} :
                      bit0 n * r = 2 (n * r)
                      theorem mul_bit0 {R : Type u₁} [NonUnitalNonAssocRing R] {n : R} {r : R} :
                      r * bit0 n = 2 (r * n)
                      theorem bit1_mul {R : Type u₁} [NonAssocRing R] {n : R} {r : R} :
                      bit1 n * r = 2 (n * r) + r
                      theorem mul_bit1 {R : Type u₁} [NonAssocRing R] {n : R} {r : R} :
                      r * bit1 n = 2 (r * n) + r
                      theorem Int.cast_mul_eq_zsmul_cast {α : Type u_1} [AddCommGroupWithOne α] (m : ) (n : ) :
                      (m * n) = m n

                      Note this holds in marginally more generality than Int.cast_mul

                      @[simp]
                      theorem zsmul_eq_mul {R : Type u₁} [Ring R] (a : R) (n : ) :
                      n a = n * a
                      theorem zsmul_eq_mul' {R : Type u₁} [Ring R] (a : R) (n : ) :
                      n a = a * n

                      Note that AddCommGroup.int_smulCommClass requires stronger assumptions on R.

                      Equations

                      Note that AddCommGroup.int_isScalarTower requires stronger assumptions on R.

                      Equations
                      theorem zsmul_int_int (a : ) (b : ) :
                      a b = a * b
                      theorem zsmul_int_one (n : ) :
                      n 1 = n
                      @[simp]
                      theorem Int.cast_pow {R : Type u₁} [Ring R] (n : ) (m : ) :
                      (n ^ m) = n ^ m
                      theorem neg_one_pow_eq_pow_mod_two {R : Type u₁} [Ring R] {n : } :
                      (-1) ^ n = (-1) ^ (n % 2)
                      theorem one_add_mul_le_pow' {R : Type u₁} [OrderedSemiring R] {a : R} (Hsq : 0 a * a) (Hsq' : 0 (1 + a) * (1 + a)) (H : 0 2 + a) (n : ) :
                      1 + n * a (1 + a) ^ n

                      Bernoulli's inequality. This version works for semirings but requires additional hypotheses 0 ≤ a * a and 0 ≤ (1 + a) * (1 + a).

                      theorem pow_le_pow_of_le_one_aux {R : Type u₁} [OrderedSemiring R] {a : R} (h : 0 a) (ha : a 1) (i : ) (k : ) :
                      a ^ (i + k) a ^ i
                      theorem pow_le_pow_of_le_one {R : Type u₁} [OrderedSemiring R] {a : R} (h : 0 a) (ha : a 1) {i : } {j : } (hij : i j) :
                      a ^ j a ^ i
                      theorem pow_le_of_le_one {R : Type u₁} [OrderedSemiring R] {a : R} (h₀ : 0 a) (h₁ : a 1) {n : } (hn : n 0) :
                      a ^ n a
                      theorem sq_le {R : Type u₁} [OrderedSemiring R] {a : R} (h₀ : 0 a) (h₁ : a 1) :
                      a ^ 2 a
                      theorem sign_cases_of_C_mul_pow_nonneg {R : Type u₁} [LinearOrderedSemiring R] {C : R} {r : R} (h : ∀ (n : ), 0 C * r ^ n) :
                      C = 0 0 < C 0 r
                      @[simp]
                      theorem abs_pow {R : Type u₁} [LinearOrderedRing R] (a : R) (n : ) :
                      |a ^ n| = |a| ^ n
                      @[simp]
                      theorem pow_bit1_neg_iff {R : Type u₁} [LinearOrderedRing R] {a : R} {n : } :
                      a ^ bit1 n < 0 a < 0
                      @[simp]
                      theorem pow_bit1_nonneg_iff {R : Type u₁} [LinearOrderedRing R] {a : R} {n : } :
                      0 a ^ bit1 n 0 a
                      @[simp]
                      theorem pow_bit1_nonpos_iff {R : Type u₁} [LinearOrderedRing R] {a : R} {n : } :
                      a ^ bit1 n 0 a 0
                      @[simp]
                      theorem pow_bit1_pos_iff {R : Type u₁} [LinearOrderedRing R] {a : R} {n : } :
                      0 < a ^ bit1 n 0 < a
                      theorem strictMono_pow_bit1 {R : Type u₁} [LinearOrderedRing R] (n : ) :
                      StrictMono fun (a : R) => a ^ bit1 n
                      theorem one_add_mul_le_pow {R : Type u₁} [LinearOrderedRing R] {a : R} (H : -2 a) (n : ) :
                      1 + n * a (1 + a) ^ n

                      Bernoulli's inequality for n : ℕ, -2 ≤ a.

                      theorem one_add_mul_sub_le_pow {R : Type u₁} [LinearOrderedRing R] {a : R} (H : -1 a) (n : ) :
                      1 + n * (a - 1) a ^ n

                      Bernoulli's inequality reformulated to estimate a^n.

                      theorem Int.natAbs_sq (x : ) :
                      (Int.natAbs x) ^ 2 = x ^ 2
                      theorem Int.natAbs_pow_two (x : ) :
                      (Int.natAbs x) ^ 2 = x ^ 2

                      Alias of Int.natAbs_sq.

                      theorem Int.natAbs_le_self_sq (a : ) :
                      (Int.natAbs a) a ^ 2
                      theorem Int.le_self_sq (b : ) :
                      b b ^ 2
                      theorem Int.le_self_pow_two (b : ) :
                      b b ^ 2

                      Alias of Int.le_self_sq.

                      theorem Int.pow_right_injective {x : } (h : 1 < Int.natAbs x) :
                      Function.Injective fun (x_1 : ) => x ^ x_1
                      def multiplesHom (A : Type y) [AddMonoid A] :
                      A ( →+ A)

                      Additive homomorphisms from are defined by the image of 1.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        def zmultiplesHom (A : Type y) [AddGroup A] :
                        A ( →+ A)

                        Additive homomorphisms from are defined by the image of 1.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          def powersHom (M : Type u) [Monoid M] :

                          Monoid homomorphisms from Multiplicative are defined by the image of Multiplicative.ofAdd 1.

                          Equations
                          Instances For
                            def zpowersHom (G : Type w) [Group G] :

                            Monoid homomorphisms from Multiplicative are defined by the image of Multiplicative.ofAdd 1.

                            Equations
                            Instances For
                              @[simp]
                              theorem powersHom_apply {M : Type u} [Monoid M] (x : M) (n : Multiplicative ) :
                              ((powersHom M) x) n = x ^ Multiplicative.toAdd n
                              @[simp]
                              theorem powersHom_symm_apply {M : Type u} [Monoid M] (f : Multiplicative →* M) :
                              (powersHom M).symm f = f (Multiplicative.ofAdd 1)
                              @[simp]
                              theorem zpowersHom_apply {G : Type w} [Group G] (x : G) (n : Multiplicative ) :
                              ((zpowersHom G) x) n = x ^ Multiplicative.toAdd n
                              @[simp]
                              theorem zpowersHom_symm_apply {G : Type w} [Group G] (f : Multiplicative →* G) :
                              (zpowersHom G).symm f = f (Multiplicative.ofAdd 1)
                              @[simp]
                              theorem multiplesHom_apply {A : Type y} [AddMonoid A] (x : A) (n : ) :
                              ((multiplesHom A) x) n = n x
                              @[simp]
                              theorem multiplesHom_symm_apply {A : Type y} [AddMonoid A] (f : →+ A) :
                              (multiplesHom A).symm f = f 1
                              @[simp]
                              theorem zmultiplesHom_apply {A : Type y} [AddGroup A] (x : A) (n : ) :
                              ((zmultiplesHom A) x) n = n x
                              @[simp]
                              theorem zmultiplesHom_symm_apply {A : Type y} [AddGroup A] (f : →+ A) :
                              (zmultiplesHom A).symm f = f 1
                              theorem MonoidHom.apply_mnat {M : Type u} [Monoid M] (f : Multiplicative →* M) (n : Multiplicative ) :
                              f n = f (Multiplicative.ofAdd 1) ^ Multiplicative.toAdd n
                              theorem MonoidHom.ext_mnat {M : Type u} [Monoid M] ⦃f : Multiplicative →* M ⦃g : Multiplicative →* M (h : f (Multiplicative.ofAdd 1) = g (Multiplicative.ofAdd 1)) :
                              f = g
                              theorem MonoidHom.apply_mint {M : Type u} [Group M] (f : Multiplicative →* M) (n : Multiplicative ) :
                              f n = f (Multiplicative.ofAdd 1) ^ Multiplicative.toAdd n

                              MonoidHom.ext_mint is defined in Data.Int.Cast

                              theorem AddMonoidHom.apply_nat {M : Type u} [AddMonoid M] (f : →+ M) (n : ) :
                              f n = n f 1

                              AddMonoidHom.ext_nat is defined in Data.Nat.Cast

                              theorem AddMonoidHom.apply_int {M : Type u} [AddGroup M] (f : →+ M) (n : ) :
                              f n = n f 1

                              AddMonoidHom.ext_int is defined in Data.Int.Cast

                              If M is commutative, powersHom is a multiplicative equivalence.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                If M is commutative, zpowersHom is a multiplicative equivalence.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For

                                  If M is commutative, multiplesHom is an additive equivalence.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For

                                    If M is commutative, zmultiplesHom is an additive equivalence.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      @[simp]
                                      theorem powersMulHom_apply {M : Type u} [CommMonoid M] (x : M) (n : Multiplicative ) :
                                      ((powersMulHom M) x) n = x ^ Multiplicative.toAdd n
                                      @[simp]
                                      theorem powersMulHom_symm_apply {M : Type u} [CommMonoid M] (f : Multiplicative →* M) :
                                      (MulEquiv.symm (powersMulHom M)) f = f (Multiplicative.ofAdd 1)
                                      @[simp]
                                      theorem zpowersMulHom_apply {G : Type w} [CommGroup G] (x : G) (n : Multiplicative ) :
                                      ((zpowersMulHom G) x) n = x ^ Multiplicative.toAdd n
                                      @[simp]
                                      theorem zpowersMulHom_symm_apply {G : Type w} [CommGroup G] (f : Multiplicative →* G) :
                                      (MulEquiv.symm (zpowersMulHom G)) f = f (Multiplicative.ofAdd 1)
                                      @[simp]
                                      theorem multiplesAddHom_apply {A : Type y} [AddCommMonoid A] (x : A) (n : ) :
                                      ((multiplesAddHom A) x) n = n x
                                      @[simp]
                                      theorem zmultiplesAddHom_apply {A : Type y} [AddCommGroup A] (x : A) (n : ) :
                                      ((zmultiplesAddHom A) x) n = n x

                                      Commutativity (again) #

                                      Facts about SemiconjBy and Commute that require zpow or zsmul, or the fact that integer multiplication equals semiring multiplication.

                                      @[simp]
                                      theorem SemiconjBy.cast_nat_mul_right {R : Type u₁} [Semiring R] {a : R} {x : R} {y : R} (h : SemiconjBy a x y) (n : ) :
                                      SemiconjBy a (n * x) (n * y)
                                      @[simp]
                                      theorem SemiconjBy.cast_nat_mul_left {R : Type u₁} [Semiring R] {a : R} {x : R} {y : R} (h : SemiconjBy a x y) (n : ) :
                                      SemiconjBy (n * a) x y
                                      @[simp]
                                      theorem SemiconjBy.cast_nat_mul_cast_nat_mul {R : Type u₁} [Semiring R] {a : R} {x : R} {y : R} (h : SemiconjBy a x y) (m : ) (n : ) :
                                      SemiconjBy (m * a) (n * x) (n * y)
                                      @[simp]
                                      theorem AddSemiconjBy.addUnits_zsmul_right {M : Type u} [AddMonoid M] {a : M} {x : AddUnits M} {y : AddUnits M} (h : AddSemiconjBy a x y) (m : ) :
                                      AddSemiconjBy a (m x) (m y)
                                      @[simp]
                                      theorem SemiconjBy.units_zpow_right {M : Type u} [Monoid M] {a : M} {x : Mˣ} {y : Mˣ} (h : SemiconjBy a x y) (m : ) :
                                      SemiconjBy a (x ^ m) (y ^ m)
                                      @[simp]
                                      theorem SemiconjBy.cast_int_mul_right {R : Type u₁} [Ring R] {a : R} {x : R} {y : R} (h : SemiconjBy a x y) (m : ) :
                                      SemiconjBy a (m * x) (m * y)
                                      @[simp]
                                      theorem SemiconjBy.cast_int_mul_left {R : Type u₁} [Ring R] {a : R} {x : R} {y : R} (h : SemiconjBy a x y) (m : ) :
                                      SemiconjBy (m * a) x y
                                      @[simp]
                                      theorem SemiconjBy.cast_int_mul_cast_int_mul {R : Type u₁} [Ring R] {a : R} {x : R} {y : R} (h : SemiconjBy a x y) (m : ) (n : ) :
                                      SemiconjBy (m * a) (n * x) (n * y)
                                      @[simp]
                                      theorem Commute.cast_nat_mul_right {R : Type u₁} [Semiring R] {a : R} {b : R} (h : Commute a b) (n : ) :
                                      Commute a (n * b)
                                      @[simp]
                                      theorem Commute.cast_nat_mul_left {R : Type u₁} [Semiring R] {a : R} {b : R} (h : Commute a b) (n : ) :
                                      Commute (n * a) b
                                      @[simp]
                                      theorem Commute.cast_nat_mul_cast_nat_mul {R : Type u₁} [Semiring R] {a : R} {b : R} (h : Commute a b) (m : ) (n : ) :
                                      Commute (m * a) (n * b)
                                      theorem Commute.self_cast_nat_mul {R : Type u₁} [Semiring R] (a : R) (n : ) :
                                      Commute a (n * a)
                                      theorem Commute.cast_nat_mul_self {R : Type u₁} [Semiring R] (a : R) (n : ) :
                                      Commute (n * a) a
                                      theorem Commute.self_cast_nat_mul_cast_nat_mul {R : Type u₁} [Semiring R] (a : R) (m : ) (n : ) :
                                      Commute (m * a) (n * a)
                                      @[simp]
                                      theorem AddCommute.addUnits_zsmul_right {M : Type u} [AddMonoid M] {a : M} {u : AddUnits M} (h : AddCommute a u) (m : ) :
                                      AddCommute a (m u)
                                      @[simp]
                                      theorem Commute.units_zpow_right {M : Type u} [Monoid M] {a : M} {u : Mˣ} (h : Commute a u) (m : ) :
                                      Commute a (u ^ m)
                                      @[simp]
                                      theorem AddCommute.addUnits_zsmul_left {M : Type u} [AddMonoid M] {u : AddUnits M} {a : M} (h : AddCommute (u) a) (m : ) :
                                      AddCommute ((m u)) a
                                      @[simp]
                                      theorem Commute.units_zpow_left {M : Type u} [Monoid M] {u : Mˣ} {a : M} (h : Commute (u) a) (m : ) :
                                      Commute ((u ^ m)) a
                                      @[simp]
                                      theorem Commute.cast_int_mul_right {R : Type u₁} [Ring R] {a : R} {b : R} (h : Commute a b) (m : ) :
                                      Commute a (m * b)
                                      @[simp]
                                      theorem Commute.cast_int_mul_left {R : Type u₁} [Ring R] {a : R} {b : R} (h : Commute a b) (m : ) :
                                      Commute (m * a) b
                                      theorem Commute.cast_int_mul_cast_int_mul {R : Type u₁} [Ring R] {a : R} {b : R} (h : Commute a b) (m : ) (n : ) :
                                      Commute (m * a) (n * b)
                                      @[simp]
                                      theorem Commute.cast_int_left {R : Type u₁} [Ring R] (a : R) (m : ) :
                                      Commute (m) a
                                      @[simp]
                                      theorem Commute.cast_int_right {R : Type u₁} [Ring R] (a : R) (m : ) :
                                      Commute a m
                                      theorem Commute.self_cast_int_mul {R : Type u₁} [Ring R] (a : R) (n : ) :
                                      Commute a (n * a)
                                      theorem Commute.cast_int_mul_self {R : Type u₁} [Ring R] (a : R) (n : ) :
                                      Commute (n * a) a
                                      theorem Commute.self_cast_int_mul_cast_int_mul {R : Type u₁} [Ring R] (a : R) (m : ) (n : ) :
                                      Commute (m * a) (n * a)
                                      theorem Nat.toAdd_pow (a : Multiplicative ) (b : ) :
                                      Multiplicative.toAdd (a ^ b) = Multiplicative.toAdd a * b
                                      @[simp]
                                      theorem Nat.ofAdd_mul (a : ) (b : ) :
                                      Multiplicative.ofAdd (a * b) = Multiplicative.ofAdd a ^ b
                                      theorem Int.toAdd_pow (a : Multiplicative ) (b : ) :
                                      Multiplicative.toAdd (a ^ b) = Multiplicative.toAdd a * b
                                      theorem Int.toAdd_zpow (a : Multiplicative ) (b : ) :
                                      Multiplicative.toAdd (a ^ b) = Multiplicative.toAdd a * b
                                      @[simp]
                                      theorem Int.ofAdd_mul (a : ) (b : ) :
                                      Multiplicative.ofAdd (a * b) = Multiplicative.ofAdd a ^ b
                                      theorem Units.conj_pow {M : Type u} [Monoid M] (u : Mˣ) (x : M) (n : ) :
                                      (u * x * u⁻¹) ^ n = u * x ^ n * u⁻¹
                                      theorem Units.conj_pow' {M : Type u} [Monoid M] (u : Mˣ) (x : M) (n : ) :
                                      (u⁻¹ * x * u) ^ n = u⁻¹ * x ^ n * u
                                      @[simp]
                                      theorem MulOpposite.op_pow {M : Type u} [Monoid M] (x : M) (n : ) :

                                      Moving to the opposite monoid commutes with taking powers.

                                      @[simp]
                                      theorem MulOpposite.unop_pow {M : Type u} [Monoid M] (x : Mᵐᵒᵖ) (n : ) :
                                      @[simp]
                                      theorem MulOpposite.op_zpow {M : Type u} [DivInvMonoid M] (x : M) (z : ) :

                                      Moving to the opposite group or GroupWithZero commutes with taking powers.

                                      @[simp]
                                      @[simp]
                                      theorem pow_eq {m : } {n : } :
                                      Int.pow m n = m ^ n