Documentation

Mathlib.Algebra.Homology.ConcreteCategory

Homology of complexes in concrete categories #

The homology of short complexes in concrete categories was studied in Mathlib.Algebra.Homology.ShortComplex.ConcreteCategory. In this file, we introduce specific definitions and lemmas for the homology of homological complexes in concrete categories. In particular, we give a computation of the connecting homomorphism of the homology sequence in terms of (co)cycles.

Constructor for cycles of a homological complex in a concrete category.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.ShortComplex.ShortExact.δ_apply {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] [CategoryTheory.HasForget₂ C Ab] [CategoryTheory.Abelian C] [CategoryTheory.Functor.Additive (CategoryTheory.forget₂ C Ab)] [CategoryTheory.Functor.PreservesHomology (CategoryTheory.forget₂ C Ab)] {ι : Type u_1} {c : ComplexShape ι} {S : CategoryTheory.ShortComplex (HomologicalComplex C c)} (hS : CategoryTheory.ShortComplex.ShortExact S) (i : ι) (j : ι) (hij : c.Rel i j) (x₃ : ((CategoryTheory.forget₂ C Ab).toPrefunctor.obj (S.X₃.X i))) (hx₃ : ((CategoryTheory.forget₂ C Ab).toPrefunctor.map (S.X₃.d i j)) x₃ = 0) (x₂ : ((CategoryTheory.forget₂ C Ab).toPrefunctor.obj (S.X₂.X i))) (hx₂ : ((CategoryTheory.forget₂ C Ab).toPrefunctor.map (S.g.f i)) x₂ = x₃) (x₁ : ((CategoryTheory.forget₂ C Ab).toPrefunctor.obj (S.X₁.X j))) (hx₁ : ((CategoryTheory.forget₂ C Ab).toPrefunctor.map (S.f.f j)) x₁ = ((CategoryTheory.forget₂ C Ab).toPrefunctor.map (S.X₂.d i j)) x₂) (k : ι) (hk : ComplexShape.next c j = k) :
    ((CategoryTheory.forget₂ C Ab).toPrefunctor.map (CategoryTheory.ShortComplex.ShortExact.δ hS i j hij)) (((CategoryTheory.forget₂ C Ab).toPrefunctor.map (HomologicalComplex.homologyπ S.X₃ i)) (HomologicalComplex.cyclesMk S.X₃ x₃ j (_ : ComplexShape.next c i = j) hx₃)) = ((CategoryTheory.forget₂ C Ab).toPrefunctor.map (HomologicalComplex.homologyπ S.X₁ j)) (HomologicalComplex.cyclesMk S.X₁ x₁ k hk (_ : ((CategoryTheory.forget₂ C Ab).toPrefunctor.map (S.X₁.d j k)) x₁ = 0))