Exact functors #
In this file, it is shown that additive functors which preserves homology also preserves finite limits and finite colimits.
TODO: provive alternate characterizations of left/right exact functors in terms of preservation of exactness.
noncomputable def
CategoryTheory.Functor.preservesFiniteLimitsOfPreservesHomology
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive C]
[CategoryTheory.Preadditive D]
(F : CategoryTheory.Functor C D)
[CategoryTheory.Functor.Additive F]
[CategoryTheory.Functor.PreservesHomology F]
[CategoryTheory.Limits.HasZeroObject C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasKernels C]
:
An additive functor which preserves homology preserves finite limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.Functor.preservesFiniteColimitsOfPreservesHomology
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive C]
[CategoryTheory.Preadditive D]
(F : CategoryTheory.Functor C D)
[CategoryTheory.Functor.Additive F]
[CategoryTheory.Functor.PreservesHomology F]
[CategoryTheory.Limits.HasZeroObject C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
[CategoryTheory.Limits.HasCokernels C]
:
An additive which preserves homology preserves finite colimits.
Equations
- One or more equations did not get rendered due to their size.