Documentation

Mathlib.Algebra.Module.Submodule.Localization

Localization of Submodules #

Results about localizations of submodules and quotient modules are provided in this file.

Main result #

TODO #

def Submodule.localized' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

Let S be the localization of R at p and N be the localization of M at p. This is the localization of an R-submodule of M viewed as an S-submodule of N.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[inline, reducible]
    abbrev Submodule.localized {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

    The localization of an R-submodule of M at p viewed as an Rₚ-submodule of Mₚ.

    Equations
    Instances For
      @[simp]
      theorem Submodule.toLocalized'_apply_coe {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (c : M') :
      ((Submodule.toLocalized' S p f M') c) = f c
      def Submodule.toLocalized' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
      M' →ₗ[R] (Submodule.localized' S p f M')

      The localization map of a submodule.

      Equations
      Instances For
        @[inline, reducible]
        abbrev Submodule.toLocalized {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :
        M' →ₗ[R] (Submodule.localized p M')

        The localization map of a submodule.

        Equations
        Instances For
          instance Submodule.isLocalizedModule {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
          Equations
          def Submodule.toLocalizedQuotient' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

          The localization map of a quotient module.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[inline, reducible]

            The localization map of a quotient module.

            Equations
            Instances For
              @[simp]
              theorem Submodule.toLocalizedQuotient'_mk {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : M) :