Function field of integral schemes #
We define the function field of an irreducible scheme as the stalk of the generic point. This is a field when the scheme is integral.
Main definition #
AlgebraicGeometry.Scheme.functionField
: The function field of an integral scheme.Algebraic_geometry.germToFunctionField
: The canonical map from a component into the function field. This map is injective.
@[inline, reducible]
noncomputable abbrev
AlgebraicGeometry.Scheme.functionField
(X : AlgebraicGeometry.Scheme)
[IrreducibleSpace ↑↑X.toPresheafedSpace]
:
The function field of an irreducible scheme is the local ring at its generic point. Despite the name, this is a field only when the scheme is integral.
Equations
- AlgebraicGeometry.Scheme.functionField X = TopCat.Presheaf.stalk X.presheaf (genericPoint ↑↑X.toPresheafedSpace)
Instances For
@[inline, reducible]
noncomputable abbrev
AlgebraicGeometry.Scheme.germToFunctionField
(X : AlgebraicGeometry.Scheme)
[IrreducibleSpace ↑↑X.toPresheafedSpace]
(U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace)
[h : Nonempty ↥U]
:
X.presheaf.toPrefunctor.obj (Opposite.op U) ⟶ AlgebraicGeometry.Scheme.functionField X
The restriction map from a component to the function field.
Equations
- AlgebraicGeometry.Scheme.germToFunctionField X U = TopCat.Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) }
Instances For
noncomputable instance
AlgebraicGeometry.instAlgebraαCommRingObjOppositeOpensTopologicalSpaceCarrierCommRingCatInstCommRingCatLargeCategoryToPresheafedSpaceToSheafedSpaceToLocallyRingedSpaceTopologicalSpace_coeToQuiverToCategoryStructOppositeSmallCategoryToPreorderToPartialOrderToCompleteSemilatticeInfInstCompleteLatticeOpensToQuiverToCategoryStructToPrefunctorPresheafOpFunctionFieldToCommSemiringInstCommRingαToSemiring
(X : AlgebraicGeometry.Scheme)
[IrreducibleSpace ↑↑X.toPresheafedSpace]
(U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace)
[Nonempty ↥U]
:
Algebra ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)) ↑(AlgebraicGeometry.Scheme.functionField X)
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
AlgebraicGeometry.instFieldαCommRingFunctionFieldIs_irreducible_of_isIntegral
(X : AlgebraicGeometry.Scheme)
[AlgebraicGeometry.IsIntegral X]
:
Equations
theorem
AlgebraicGeometry.germ_injective_of_isIntegral
(X : AlgebraicGeometry.Scheme)
[AlgebraicGeometry.IsIntegral X]
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(x : ↥U)
:
Function.Injective ⇑(TopCat.Presheaf.germ X.presheaf x)
theorem
AlgebraicGeometry.Scheme.germToFunctionField_injective
(X : AlgebraicGeometry.Scheme)
[AlgebraicGeometry.IsIntegral X]
(U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace)
[Nonempty ↥U]
:
theorem
AlgebraicGeometry.genericPoint_eq_of_isOpenImmersion
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
[H : AlgebraicGeometry.IsOpenImmersion f]
[hX : IrreducibleSpace ↑↑X.toPresheafedSpace]
[IrreducibleSpace ↑↑Y.toPresheafedSpace]
:
f.val.base (genericPoint ↑↑X.toPresheafedSpace) = genericPoint ↑↑Y.toPresheafedSpace
noncomputable instance
AlgebraicGeometry.stalkFunctionFieldAlgebra
(X : AlgebraicGeometry.Scheme)
[IrreducibleSpace ↑↑X.toPresheafedSpace]
(x : ↑↑X.toPresheafedSpace)
:
Algebra ↑(TopCat.Presheaf.stalk X.presheaf x) ↑(AlgebraicGeometry.Scheme.functionField X)
Equations
- AlgebraicGeometry.stalkFunctionFieldAlgebra X x = RingHom.toAlgebra (TopCat.Presheaf.stalkSpecializes X.presheaf (_ : genericPoint ↑↑X.toPresheafedSpace ⤳ x))
instance
AlgebraicGeometry.functionField_isScalarTower
(X : AlgebraicGeometry.Scheme)
[IrreducibleSpace ↑↑X.toPresheafedSpace]
(U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace)
(x : ↥U)
[Nonempty ↥U]
:
IsScalarTower ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)) ↑(TopCat.Presheaf.stalk X.presheaf ↑x)
↑(AlgebraicGeometry.Scheme.functionField X)
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
AlgebraicGeometry.instAlgebraαCommRingFunctionFieldObjOppositeCommRingCatToQuiverToCategoryStructOppositeInstCommRingCatLargeCategorySchemeInstCategorySchemeToPrefunctorSpecOpInstIrreducibleSpaceαTopologicalSpaceCarrierCommRingCatInstCommRingCatLargeCategoryToPresheafedSpaceToSheafedSpaceToLocallyRingedSpaceObjOppositeToQuiverToCategoryStructOppositeSchemeInstCategorySchemeToPrefunctorSpecOpInstTopologicalSpaceαCarrierToPresheafedSpaceToCommSemiringInstCommRingαToSemiringToDivisionSemiringToSemifieldInstFieldαCommRingFunctionFieldIs_irreducible_of_isIntegralInstIsIntegralObjOppositeCommRingCatToQuiverToCategoryStructOppositeInstCommRingCatLargeCategorySchemeInstCategorySchemeToPrefunctorSpecOp
(R : CommRingCat)
[IsDomain ↑R]
:
Algebra ↑R ↑(AlgebraicGeometry.Scheme.functionField (AlgebraicGeometry.Scheme.Spec.toPrefunctor.obj (Opposite.op R)))
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
AlgebraicGeometry.genericPoint_eq_bot_of_affine
(R : CommRingCat)
[IsDomain ↑R]
:
genericPoint ↑↑(AlgebraicGeometry.Scheme.Spec.toPrefunctor.obj (Opposite.op R)).toPresheafedSpace = { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }
instance
AlgebraicGeometry.functionField_isFractionRing_of_affine
(R : CommRingCat)
[IsDomain ↑R]
:
IsFractionRing ↑R
↑(AlgebraicGeometry.Scheme.functionField (AlgebraicGeometry.Scheme.Spec.toPrefunctor.obj (Opposite.op R)))
Equations
- One or more equations did not get rendered due to their size.
instance
AlgebraicGeometry.instIsIntegralRestrictObjOpensαTopologicalSpaceCarrierCommRingCatInstCommRingCatLargeCategoryToPresheafedSpaceToSheafedSpaceToLocallyRingedSpaceTopologicalSpace_coeToQuiverToCategoryStructSmallCategoryToPreorderToPartialOrderToCompleteSemilatticeInfInstCompleteLatticeOpensTopCatToQuiverToCategoryStructInstTopCatLargeCategoryToPrefunctorToTopCatInclusionOpenEmbedding
{X : AlgebraicGeometry.Scheme}
[AlgebraicGeometry.IsIntegral X]
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
[hU : Nonempty ↥U]
:
AlgebraicGeometry.IsIntegral (X ∣_ᵤ U)
Equations
- (_ : AlgebraicGeometry.IsIntegral (X ∣_ᵤ U)) = (_ : AlgebraicGeometry.IsIntegral (X ∣_ᵤ U))
theorem
AlgebraicGeometry.IsAffineOpen.primeIdealOf_genericPoint
{X : AlgebraicGeometry.Scheme}
[AlgebraicGeometry.IsIntegral X]
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(hU : AlgebraicGeometry.IsAffineOpen U)
[h : Nonempty ↥U]
:
AlgebraicGeometry.IsAffineOpen.primeIdealOf hU
{ val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } = genericPoint
↑↑(AlgebraicGeometry.Scheme.Spec.toPrefunctor.obj
(Opposite.op (X.presheaf.toPrefunctor.obj (Opposite.op U)))).toPresheafedSpace
theorem
AlgebraicGeometry.functionField_isFractionRing_of_isAffineOpen
(X : AlgebraicGeometry.Scheme)
[AlgebraicGeometry.IsIntegral X]
(U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace)
(hU : AlgebraicGeometry.IsAffineOpen U)
[hU' : Nonempty ↥U]
:
IsFractionRing ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)) ↑(AlgebraicGeometry.Scheme.functionField X)
instance
AlgebraicGeometry.instIsAffineObjAffineCover
(X : AlgebraicGeometry.Scheme)
(x : ↑↑X.toPresheafedSpace)
:
Equations
- One or more equations did not get rendered due to their size.
instance
AlgebraicGeometry.instIsFractionRingαCommRingStalkCommRingCatInstCommRingCatLargeCategoryHasColimits_commRingCatCarrierToPresheafedSpaceToSheafedSpaceToLocallyRingedSpacePresheafInstCommRingαFunctionFieldIs_irreducible_of_isIntegralStalkFunctionFieldAlgebra
(X : AlgebraicGeometry.Scheme)
[AlgebraicGeometry.IsIntegral X]
(x : ↑↑X.toPresheafedSpace)
:
IsFractionRing ↑(TopCat.Presheaf.stalk X.presheaf x) ↑(AlgebraicGeometry.Scheme.functionField X)
Equations
- One or more equations did not get rendered due to their size.