Properties of morphisms between Schemes #
We provide the basic framework for talking about properties of morphisms between Schemes.
A MorphismProperty Scheme
is a predicate on morphisms between schemes, and an
AffineTargetMorphismProperty
is a predicate on morphisms into affine schemes. Given a
P : AffineTargetMorphismProperty
, we may construct a MorphismProperty
called
targetAffineLocally P
that holds for f : X ⟶ Y
whenever P
holds for the
restriction of f
on every affine open subset of Y
.
Main definitions #
AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal
: We say thatP.IsLocal
ifP
satisfies the assumptions of the affine communication lemma (AlgebraicGeometry.of_affine_open_cover
). That is,
P
respects isomorphisms.- If
P
holds forf : X ⟶ Y
, thenP
holds forf ∣_ Y.basicOpen r
for any global sectionr
. - If
P
holds forf ∣_ Y.basicOpen r
for allr
in a spanning set of the global sections, thenP
holds forf
.
AlgebraicGeometry.PropertyIsLocalAtTarget
: We say thatPropertyIsLocalAtTarget P
forP : MorphismProperty Scheme
if
P
respects isomorphisms.- If
P
holds forf : X ⟶ Y
, thenP
holds forf ∣_ U
for anyU
. - If
P
holds forf ∣_ U
for an open coverU
ofY
, thenP
holds forf
.
Main results #
AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
: IfP.IsLocal
, thentargetAffineLocally P f
iff there exists an affine cover{ Uᵢ }
ofY
such thatP
holds forf ∣_ Uᵢ
.AlgebraicGeometry.AffineTargetMorphismProperty.isLocalOfOpenCoverImply
: If the existence of an affine cover{ Uᵢ }
ofY
such thatP
holds forf ∣_ Uᵢ
impliestargetAffineLocally P f
, thenP.IsLocal
.AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_target_iff
: IfY
is affine andf : X ⟶ Y
, thentargetAffineLocally P f ↔ P f
providedP.IsLocal
.AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
: IfP.IsLocal
, thenPropertyIsLocalAtTarget (targetAffineLocally P)
.AlgebraicGeometry.PropertyIsLocalAtTarget.openCover_TFAE
: IfPropertyIsLocalAtTarget P
, thenP f
iff there exists an open cover{ Uᵢ }
ofY
such thatP
holds forf ∣_ Uᵢ
.
These results should not be used directly, and should be ported to each property that is local.
An AffineTargetMorphismProperty
is a class of morphisms from an arbitrary scheme into an
affine scheme.
Equations
- AlgebraicGeometry.AffineTargetMorphismProperty = (⦃X Y : AlgebraicGeometry.Scheme⦄ → (X ⟶ Y) → [inst : AlgebraicGeometry.IsAffine Y] → Prop)
Instances For
IsIso
as a MorphismProperty
.
Equations
Instances For
IsIso
as an AffineTargetMorphismProperty
.
Instances For
An AffineTargetMorphismProperty
can be extended to a MorphismProperty
such that it
never holds when the target is not affine
Equations
- AlgebraicGeometry.AffineTargetMorphismProperty.toProperty P f = ∃ (h : AlgebraicGeometry.IsAffine x), P f
Instances For
For a P : AffineTargetMorphismProperty
, targetAffineLocally P
holds for
f : X ⟶ Y
whenever P
holds for the restriction of f
on every affine open subset of Y
.
Equations
- AlgebraicGeometry.targetAffineLocally P f = ∀ (U : ↑(AlgebraicGeometry.Scheme.affineOpens Y)), P (f ∣_ ↑U)
Instances For
We say that P : AffineTargetMorphismProperty
is a local property if
P
respects isomorphisms.- If
P
holds forf : X ⟶ Y
, thenP
holds forf ∣_ Y.basicOpen r
for any global sectionr
. - If
P
holds forf ∣_ Y.basicOpen r
for allr
in a spanning set of the global sections, thenP
holds forf
.
- RespectsIso : CategoryTheory.MorphismProperty.RespectsIso (AlgebraicGeometry.AffineTargetMorphismProperty.toProperty P)
P
as a morphism property respects isomorphisms - toBasicOpen : ∀ {X Y : AlgebraicGeometry.Scheme} [inst : AlgebraicGeometry.IsAffine Y] (f : X ⟶ Y) (r : ↑(Y.presheaf.toPrefunctor.obj (Opposite.op ⊤))), P f → P (f ∣_ Y.basicOpen r)
P
is stable under restriction to basic open set of global sections. - ofBasicOpenCover : ∀ {X Y : AlgebraicGeometry.Scheme} [inst : AlgebraicGeometry.IsAffine Y] (f : X ⟶ Y) (s : Finset ↑(Y.presheaf.toPrefunctor.obj (Opposite.op ⊤))), Ideal.span ↑s = ⊤ → (∀ (r : { x : ↑(Y.presheaf.toPrefunctor.obj (Opposite.op ⊤)) // x ∈ s }), P (f ∣_ Y.basicOpen ↑r)) → P f
P
forf
ifP
holds forf
restricted to basic sets of a spanning set of the global sections
Instances For
Specialization of ConcreteCategory.id_apply
because simp
can't see through the defeq.
We say that P : MorphismProperty Scheme
is local at the target if
P
respects isomorphisms.- If
P
holds forf : X ⟶ Y
, thenP
holds forf ∣_ U
for anyU
. - If
P
holds forf ∣_ U
for an open coverU
ofY
, thenP
holds forf
.
- RespectsIso : CategoryTheory.MorphismProperty.RespectsIso P
P
respects isomorphisms. - restrict : ∀ {X Y : AlgebraicGeometry.Scheme} (f : X ⟶ Y) (U : TopologicalSpace.Opens ↑↑Y.toPresheafedSpace), P f → P (f ∣_ U)
If
P
holds forf : X ⟶ Y
, thenP
holds forf ∣_ U
for anyU
. - of_openCover : ∀ {X Y : AlgebraicGeometry.Scheme} (f : X ⟶ Y) (𝒰 : AlgebraicGeometry.Scheme.OpenCover Y), (∀ (i : 𝒰.J), P CategoryTheory.Limits.pullback.snd) → P f
If
P
holds forf ∣_ U
for an open coverU
ofY
, thenP
holds forf
.
Instances For
A P : AffineTargetMorphismProperty
is stable under base change if P
holds for Y ⟶ S
implies that P
holds for X ×ₛ Y ⟶ X
with X
and S
affine schemes.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The AffineTargetMorphismProperty
associated to (targetAffineLocally P).diagonal
.
See diagonal_targetAffineLocally_eq_targetAffineLocally
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
topologically P
holds for a morphism if the underlying topological map satisfies P
.
Equations
- AlgebraicGeometry.MorphismProperty.topologically P f = P ⇑f.val.base