Universally closed morphism #
A morphism of schemes f : X ⟶ Y
is universally closed if X ×[Y] Y' ⟶ Y'
is a closed map
for all base change Y' ⟶ Y
.
We show that being universally closed is local at the target, and is stable under compositions and base changes.
class
AlgebraicGeometry.UniversallyClosed
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
A morphism of schemes f : X ⟶ Y
is universally closed if the base change X ×[Y] Y' ⟶ Y'
along any morphism Y' ⟶ Y
is (topologically) a closed map.
Instances
instance
AlgebraicGeometry.universallyClosedTypeComp
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[hf : AlgebraicGeometry.UniversallyClosed f]
[hg : AlgebraicGeometry.UniversallyClosed g]
:
Equations
instance
AlgebraicGeometry.universallyClosedFst
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[hg : AlgebraicGeometry.UniversallyClosed g]
:
AlgebraicGeometry.UniversallyClosed CategoryTheory.Limits.pullback.fst
Equations
- (_ : AlgebraicGeometry.UniversallyClosed CategoryTheory.Limits.pullback.fst) = (_ : AlgebraicGeometry.UniversallyClosed CategoryTheory.Limits.pullback.fst)
instance
AlgebraicGeometry.universallyClosedSnd
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[hf : AlgebraicGeometry.UniversallyClosed f]
:
AlgebraicGeometry.UniversallyClosed CategoryTheory.Limits.pullback.snd
Equations
- (_ : AlgebraicGeometry.UniversallyClosed CategoryTheory.Limits.pullback.snd) = (_ : AlgebraicGeometry.UniversallyClosed CategoryTheory.Limits.pullback.snd)
theorem
AlgebraicGeometry.morphismRestrict_base
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(U : TopologicalSpace.Opens ↑↑Y.toPresheafedSpace)
:
⇑(f ∣_ U).val.base = Set.restrictPreimage U.carrier ⇑f.val.base
theorem
AlgebraicGeometry.UniversallyClosed.openCover_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(𝒰 : AlgebraicGeometry.Scheme.OpenCover Y)
:
AlgebraicGeometry.UniversallyClosed f ↔ ∀ (i : 𝒰.J), AlgebraicGeometry.UniversallyClosed CategoryTheory.Limits.pullback.snd