Documentation

Mathlib.AlgebraicTopology.DoldKan.EquivalencePseudoabelian

The Dold-Kan correspondence for pseudoabelian categories #

In this file, for any idempotent complete additive category C, the Dold-Kan equivalence Idempotents.DoldKan.Equivalence C : SimplicialObject C ≌ ChainComplex C ℕ is obtained. It is deduced from the equivalence Preadditive.DoldKan.Equivalence between the respective idempotent completions of these categories using the fact that when C is idempotent complete, then both SimplicialObject C and ChainComplex C ℕ are idempotent complete.

The construction of Idempotents.DoldKan.Equivalence uses the tools introduced in the file Compatibility.lean. Doing so, the functor Idempotents.DoldKan.N of the equivalence is the composition of N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ) (defined in FunctorN.lean) and the inverse of the equivalence ChainComplex C ℕ ≌ Karoubi (ChainComplex C ℕ). The functor Idempotents.DoldKan.Γ of the equivalence is by definition the functor Γ₀ introduced in FunctorGamma.lean.

(See Equivalence.lean for the general strategy of proof of the Dold-Kan equivalence.)

@[simp]
theorem CategoryTheory.Idempotents.DoldKan.N_obj {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.IsIdempotentComplete C] [CategoryTheory.Limits.HasFiniteCoproducts C] (X : CategoryTheory.SimplicialObject C) :
CategoryTheory.Idempotents.DoldKan.N.toPrefunctor.obj X = (CategoryTheory.Idempotents.toKaroubiEquivalence (ChainComplex C )).inverse.toPrefunctor.obj (AlgebraicTopology.DoldKan.N₁.toPrefunctor.obj X)

The functor N for the equivalence is obtained by composing N' : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ) and the inverse of the equivalence ChainComplex C ℕ ≌ Karoubi (ChainComplex C ℕ).

Equations
Instances For

    The functor Γ for the equivalence is Γ'.

    Equations
    • CategoryTheory.Idempotents.DoldKan.Γ = AlgebraicTopology.DoldKan.Γ₀
    Instances For

      A reformulation of the isomorphism toKaroubi (SimplicialObject C) ⋙ N₂ ≅ N₁

      Equations
      • CategoryTheory.Idempotents.DoldKan.isoN₁ = AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁
      Instances For

        A reformulation of the canonical isomorphism toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ≅ Γ ⋙ toKaroubi (SimplicialObject C).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.IsIdempotentComplete C] [CategoryTheory.Limits.HasFiniteCoproducts C] (X : ChainComplex C ) :
          (AlgebraicTopology.DoldKan.N₂.toPrefunctor.map (CategoryTheory.Idempotents.DoldKan.isoΓ₀.hom.app X)).f = AlgebraicTopology.DoldKan.PInfty

          The Dold-Kan equivalence for pseudoabelian categories given by the functors N and Γ. It is obtained by applying the results in Compatibility.lean to the equivalence Preadditive.DoldKan.Equivalence.

          Equations
          Instances For
            theorem CategoryTheory.Idempotents.DoldKan.equivalence_inverse {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.IsIdempotentComplete C] [CategoryTheory.Limits.HasFiniteCoproducts C] :
            CategoryTheory.Idempotents.DoldKan.equivalence.inverse = CategoryTheory.Idempotents.DoldKan.Γ
            theorem CategoryTheory.Idempotents.DoldKan. {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.IsIdempotentComplete C] [CategoryTheory.Limits.HasFiniteCoproducts C] :
            AlgebraicTopology.DoldKan.Compatibility.τ₀ = AlgebraicTopology.DoldKan.Compatibility.τ₁ CategoryTheory.Idempotents.DoldKan.isoN₁ CategoryTheory.Idempotents.DoldKan.isoΓ₀ AlgebraicTopology.DoldKan.N₁Γ₀

            The natural isomorphism NΓ' satisfies the compatibility that is needed for the construction of our counit isomorphism η`

            The counit isomorphism induced by N₁Γ₀

            Equations
            Instances For
              theorem CategoryTheory.Idempotents.DoldKan.equivalence_counitIso {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.IsIdempotentComplete C] [CategoryTheory.Limits.HasFiniteCoproducts C] :
              CategoryTheory.Idempotents.DoldKan.equivalence.counitIso = CategoryTheory.Idempotents.DoldKan.η

              The unit isomorphism induced by Γ₂N₁.

              Equations
              Instances For
                theorem CategoryTheory.Idempotents.DoldKan.equivalence_unitIso {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.IsIdempotentComplete C] [CategoryTheory.Limits.HasFiniteCoproducts C] :
                CategoryTheory.Idempotents.DoldKan.equivalence.unitIso = CategoryTheory.Idempotents.DoldKan.ε