Documentation

Mathlib.AlgebraicTopology.MooreComplex

Moore complex #

We construct the normalized Moore complex, as a functor SimplicialObject C ⥤ ChainComplex C ℕ, for any abelian category C.

The n-th object is intersection of the kernels of X.δ i : X.obj n ⟶ X.obj (n-1), for i = 1, ..., n.

The differentials are induced from X.δ 0, which maps each of these intersections of kernels to the next.

This functor is one direction of the Dold-Kan equivalence, which we're still working towards.

References #

The definitions in this namespace are all auxiliary definitions for NormalizedMooreComplex and should usually only be accessed via that.

The normalized Moore complex in degree n, as a subobject of X n.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def AlgebraicTopology.NormalizedMooreComplex.objD {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Abelian C] (X : CategoryTheory.SimplicialObject C) (n : ) :
    CategoryTheory.Subobject.underlying.toPrefunctor.obj (AlgebraicTopology.NormalizedMooreComplex.objX X (n + 1)) CategoryTheory.Subobject.underlying.toPrefunctor.obj (AlgebraicTopology.NormalizedMooreComplex.objX X n)

    The differentials in the normalized Moore complex.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem AlgebraicTopology.NormalizedMooreComplex.obj_d {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Abelian C] (X : CategoryTheory.SimplicialObject C) (i : ) (j : ) :
      (AlgebraicTopology.NormalizedMooreComplex.obj X).d i j = if h : i = j + 1 then CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom (_ : CategoryTheory.Subobject.underlying.toPrefunctor.obj (AlgebraicTopology.NormalizedMooreComplex.objX X i) = CategoryTheory.Subobject.underlying.toPrefunctor.obj (AlgebraicTopology.NormalizedMooreComplex.objX X (j + 1)))) (match j with | 0 => CategoryTheory.CategoryStruct.comp (CategoryTheory.Subobject.arrow (Finset.inf Finset.univ fun (k : Fin (0 + 1)) => CategoryTheory.Limits.kernelSubobject (CategoryTheory.SimplicialObject.δ X (Fin.succ k)))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.SimplicialObject.δ X 0) (CategoryTheory.inv (CategoryTheory.Subobject.arrow ))) | Nat.succ n => CategoryTheory.Subobject.factorThru (Finset.inf Finset.univ fun (k : Fin (n + 1)) => CategoryTheory.Limits.kernelSubobject (CategoryTheory.SimplicialObject.δ X (Fin.succ k))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Subobject.arrow (Finset.inf Finset.univ fun (k : Fin (n + 1 + 1)) => CategoryTheory.Limits.kernelSubobject (CategoryTheory.SimplicialObject.δ X (Fin.succ k)))) (CategoryTheory.SimplicialObject.δ X 0)) (_ : CategoryTheory.Subobject.Factors (Finset.inf Finset.univ fun (k : Fin (Nat.add n 0 + 1)) => CategoryTheory.Limits.kernelSubobject (CategoryTheory.SimplicialObject.δ X (Fin.succ k))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Subobject.arrow (AlgebraicTopology.NormalizedMooreComplex.objX X (n + 1 + 1))) (CategoryTheory.SimplicialObject.δ X 0)))) else 0

      The normalized Moore complex functor, on objects.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The normalized Moore complex functor, on morphisms.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The (normalized) Moore complex of a simplicial object X in an abelian category C.

          The n-th object is intersection of the kernels of X.δ i : X.obj n ⟶ X.obj (n-1), for i = 1, ..., n.

          The differentials are induced from X.δ 0, which maps each of these intersections of kernels to the next.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For