Topological simplices #
We define the natural functor from SimplexCategory
to TopCat
sending [n]
to the
topological n
-simplex.
This is used to define TopCat.toSSet
in AlgebraicTopology.SingularSet
.
instance
SimplexCategory.instFintypeObjSimplexCategoryToQuiverToCategoryStructSmallCategoryTypeToQuiverToCategoryStructTypesToPrefunctorForget
(x : SimplexCategory)
:
Fintype (CategoryTheory.ConcreteCategory.forget.toPrefunctor.obj x)
Equations
- One or more equations did not get rendered due to their size.
def
SimplexCategory.toTopObj
(x : SimplexCategory)
:
Set ((CategoryTheory.forget SimplexCategory).toPrefunctor.obj x → NNReal)
The topological simplex associated to x : SimplexCategory
.
This is the object part of the functor SimplexCategory.toTop
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
SimplexCategory.instCoeFunElemForAllObjSimplexCategoryToQuiverToCategoryStructSmallCategoryTypeToQuiverToCategoryStructTypesToPrefunctorForgetInstConcreteCategorySimplexCategorySmallCategoryNNRealToTopObj
(x : SimplexCategory)
:
CoeFun ↑(SimplexCategory.toTopObj x) fun (x_1 : ↑(SimplexCategory.toTopObj x)) =>
(CategoryTheory.forget SimplexCategory).toPrefunctor.obj x → NNReal
Equations
- One or more equations did not get rendered due to their size.
theorem
SimplexCategory.toTopObj.ext
{x : SimplexCategory}
(f : ↑(SimplexCategory.toTopObj x))
(g : ↑(SimplexCategory.toTopObj x))
:
def
SimplexCategory.toTopMap
{x : SimplexCategory}
{y : SimplexCategory}
(f : x ⟶ y)
(g : ↑(SimplexCategory.toTopObj x))
:
A morphism in SimplexCategory
induces a map on the associated topological spaces.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SimplexCategory.coe_toTopMap
{x : SimplexCategory}
{y : SimplexCategory}
(f : x ⟶ y)
(g : ↑(SimplexCategory.toTopObj x))
(i : (CategoryTheory.forget SimplexCategory).toPrefunctor.obj y)
:
↑(SimplexCategory.toTopMap f g) i = Finset.sum
(Finset.filter (fun (x_1 : (CategoryTheory.forget SimplexCategory).toPrefunctor.obj x) => f x_1 = i) Finset.univ)
fun (j : (CategoryTheory.forget SimplexCategory).toPrefunctor.obj x) => ↑g j
theorem
SimplexCategory.continuous_toTopMap
{x : SimplexCategory}
{y : SimplexCategory}
(f : x ⟶ y)
:
@[simp]
theorem
SimplexCategory.toTop_obj
(x : SimplexCategory)
:
SimplexCategory.toTop.toPrefunctor.obj x = TopCat.of ↑(SimplexCategory.toTopObj x)
@[simp]
theorem
SimplexCategory.toTop_map_apply :
∀ {X Y : SimplexCategory} (f : X ⟶ Y) (g : ↑(SimplexCategory.toTopObj X)),
(SimplexCategory.toTop.toPrefunctor.map f) g = SimplexCategory.toTopMap f g
The functor associating the topological n
-simplex to [n] : SimplexCategory
.
Equations
- One or more equations did not get rendered due to their size.