Documentation

Mathlib.Analysis.Analytic.Polynomial

Polynomials are analytic #

This file combines the analysis and algebra libraries and shows that evaluation of a polynomial is an analytic function.

theorem AnalyticAt.aeval_polynomial {𝕜 : Type u_1} {E : Type u_2} {A : Type u_3} {B : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CommSemiring A] {z : E} [NormedRing B] [NormedAlgebra 𝕜 B] [Algebra A B] {f : EB} (hf : AnalyticAt 𝕜 f z) (p : Polynomial A) :
AnalyticAt 𝕜 (fun (x : E) => (Polynomial.aeval (f x)) p) z
theorem AnalyticOn.aeval_polynomial {𝕜 : Type u_1} {E : Type u_2} {A : Type u_3} {B : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CommSemiring A] {s : Set E} [NormedRing B] [NormedAlgebra 𝕜 B] [Algebra A B] {f : EB} (hf : AnalyticOn 𝕜 f s) (p : Polynomial A) :
AnalyticOn 𝕜 (fun (x : E) => (Polynomial.aeval (f x)) p) s
theorem AnalyticOn.eval_polynomial {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {A : Type u_5} [NormedCommRing A] [NormedAlgebra 𝕜 A] (p : Polynomial A) :
AnalyticOn 𝕜 (fun (x : A) => Polynomial.eval x p) Set.univ
theorem AnalyticAt.aeval_mvPolynomial {𝕜 : Type u_1} {E : Type u_2} {A : Type u_3} {B : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CommSemiring A] {z : E} [NormedCommRing B] [NormedAlgebra 𝕜 B] [Algebra A B] {σ : Type u_5} {f : EσB} (hf : ∀ (i : σ), AnalyticAt 𝕜 (fun (x : E) => f x i) z) (p : MvPolynomial σ A) :
AnalyticAt 𝕜 (fun (x : E) => (MvPolynomial.aeval (f x)) p) z
theorem AnalyticOn.aeval_mvPolynomial {𝕜 : Type u_1} {E : Type u_2} {A : Type u_3} {B : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CommSemiring A] {s : Set E} [NormedCommRing B] [NormedAlgebra 𝕜 B] [Algebra A B] {σ : Type u_5} {f : EσB} (hf : ∀ (i : σ), AnalyticOn 𝕜 (fun (x : E) => f x i) s) (p : MvPolynomial σ A) :
AnalyticOn 𝕜 (fun (x : E) => (MvPolynomial.aeval (f x)) p) s
theorem AnalyticOn.eval_continuousLinearMap {𝕜 : Type u_1} {E : Type u_2} {B : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedCommRing B] [NormedAlgebra 𝕜 B] {σ : Type u_5} (f : E →L[𝕜] σB) (p : MvPolynomial σ B) :
AnalyticOn 𝕜 (fun (x : E) => (MvPolynomial.eval (f x)) p) Set.univ
theorem AnalyticOn.eval_continuousLinearMap' {𝕜 : Type u_1} {E : Type u_2} {B : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedCommRing B] [NormedAlgebra 𝕜 B] {σ : Type u_5} (f : σE →L[𝕜] B) (p : MvPolynomial σ B) :
AnalyticOn 𝕜 (fun (x : E) => (MvPolynomial.eval fun (x_1 : σ) => (f x_1) x) p) Set.univ
theorem AnalyticOn.eval_linearMap {𝕜 : Type u_1} {E : Type u_2} {B : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedCommRing B] [NormedAlgebra 𝕜 B] {σ : Type u_5} [CompleteSpace 𝕜] [T2Space E] [FiniteDimensional 𝕜 E] (f : E →ₗ[𝕜] σB) (p : MvPolynomial σ B) :
AnalyticOn 𝕜 (fun (x : E) => (MvPolynomial.eval (f x)) p) Set.univ
theorem AnalyticOn.eval_linearMap' {𝕜 : Type u_1} {E : Type u_2} {B : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedCommRing B] [NormedAlgebra 𝕜 B] {σ : Type u_5} [CompleteSpace 𝕜] [T2Space E] [FiniteDimensional 𝕜 E] (f : σE →ₗ[𝕜] B) (p : MvPolynomial σ B) :
AnalyticOn 𝕜 (fun (x : E) => (MvPolynomial.eval fun (x_1 : σ) => (f x_1) x) p) Set.univ
theorem AnalyticOn.eval_mvPolynomial {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {σ : Type u_5} [CompleteSpace 𝕜] [Fintype σ] (p : MvPolynomial σ 𝕜) :
AnalyticOn 𝕜 (fun (x : σ𝕜) => (MvPolynomial.eval x) p) Set.univ