Star operations on derivatives #
For detailed documentation of the FrΓ©chet derivative,
see the module docstring of Analysis/Calculus/FDeriv/Basic.lean
.
This file contains the usual formulas (and existence assertions) for the derivative of the star
operation. Note that these only apply when the field that the derivative is respect to has a trivial
star operation; which as should be expected rules out π = β
.
theorem
HasStrictFDerivAt.star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(h : HasStrictFDerivAt f f' x)
:
HasStrictFDerivAt (fun (x : E) => star (f x)) (ContinuousLinearMap.comp (β(starL' π)) f') x
theorem
HasFDerivAtFilter.star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{L : Filter E}
(h : HasFDerivAtFilter f f' x L)
:
HasFDerivAtFilter (fun (x : E) => star (f x)) (ContinuousLinearMap.comp (β(starL' π)) f') x L
theorem
HasFDerivWithinAt.star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{s : Set E}
(h : HasFDerivWithinAt f f' s x)
:
HasFDerivWithinAt (fun (x : E) => star (f x)) (ContinuousLinearMap.comp (β(starL' π)) f') s x
theorem
HasFDerivAt.star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(h : HasFDerivAt f f' x)
:
HasFDerivAt (fun (x : E) => star (f x)) (ContinuousLinearMap.comp (β(starL' π)) f') x
theorem
DifferentiableWithinAt.star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{x : E}
{s : Set E}
(h : DifferentiableWithinAt π f s x)
:
DifferentiableWithinAt π (fun (y : E) => star (f y)) s x
@[simp]
theorem
differentiableWithinAt_star_iff
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{x : E}
{s : Set E}
:
DifferentiableWithinAt π (fun (y : E) => star (f y)) s x β DifferentiableWithinAt π f s x
theorem
DifferentiableAt.star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{x : E}
(h : DifferentiableAt π f x)
:
DifferentiableAt π (fun (y : E) => star (f y)) x
@[simp]
theorem
differentiableAt_star_iff
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{x : E}
:
DifferentiableAt π (fun (y : E) => star (f y)) x β DifferentiableAt π f x
theorem
DifferentiableOn.star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{s : Set E}
(h : DifferentiableOn π f s)
:
DifferentiableOn π (fun (y : E) => star (f y)) s
@[simp]
theorem
differentiableOn_star_iff
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{s : Set E}
:
DifferentiableOn π (fun (y : E) => star (f y)) s β DifferentiableOn π f s
theorem
Differentiable.star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
(h : Differentiable π f)
:
Differentiable π fun (y : E) => star (f y)
@[simp]
theorem
differentiable_star_iff
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
:
(Differentiable π fun (y : E) => star (f y)) β Differentiable π f
theorem
fderivWithin_star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
:
fderivWithin π (fun (y : E) => star (f y)) s x = ContinuousLinearMap.comp (β(starL' π)) (fderivWithin π f s x)
@[simp]
theorem
fderiv_star
{π : Type u_1}
[NontriviallyNormedField π]
[StarRing π]
[TrivialStar π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[StarAddMonoid F]
[NormedSpace π F]
[StarModule π F]
[ContinuousStar F]
{f : E β F}
{x : E}
: