PoincarΓ© disc #
In this file we define Complex.UnitDisc
to be the unit disc in the complex plane. We also
introduce some basic operations on this disc.
Complex unit disc.
Equations
- UnitDisc.termπ» = Lean.ParserDescr.node `UnitDisc.termπ» 1024 (Lean.ParserDescr.symbol "π»")
Instances For
Equations
- Complex.UnitDisc.instCommSemigroup = id inferInstance
Equations
- Complex.UnitDisc.instHasDistribNeg = id inferInstance
Equations
- Complex.UnitDisc.instCoe = { coe := Subtype.val }
@[simp]
A constructor that assumes abs z < 1
instead of dist z 0 < 1
and returns an element
of π»
instead of β₯Metric.ball (0 : β) 1
.
Equations
- Complex.UnitDisc.mk z hz = { val := z, property := (_ : z β Metric.ball 0 1) }
Instances For
@[simp]
theorem
Complex.UnitDisc.coe_mk
(z : β)
(hz : Complex.abs z < 1)
:
β(Complex.UnitDisc.mk z hz) = z
@[simp]
theorem
Complex.UnitDisc.mk_coe
(z : Complex.UnitDisc)
(hz : optParam (Complex.abs βz < 1) (_ : Complex.abs βz < 1))
:
Complex.UnitDisc.mk (βz) hz = z
@[simp]
theorem
Complex.UnitDisc.mk_neg
(z : β)
(hz : Complex.abs (-z) < 1)
:
Complex.UnitDisc.mk (-z) hz = -Complex.UnitDisc.mk z (_ : Complex.abs z < 1)
Equations
- One or more equations did not get rendered due to their size.
Equations
- Complex.UnitDisc.instInhabitedUnitDisc = { default := 0 }
Equations
- Complex.UnitDisc.circleAction = mulActionSphereBall
instance
Complex.UnitDisc.isScalarTower_circle_circle :
IsScalarTower (β₯circle) (β₯circle) Complex.UnitDisc
Equations
- Complex.UnitDisc.isScalarTower_circle_circle = (_ : IsScalarTower β(Metric.sphere 0 1) β(Metric.sphere 0 1) β(Metric.ball 0 1))
Equations
- Complex.UnitDisc.isScalarTower_circle = (_ : IsScalarTower β(Metric.sphere 0 1) β(Metric.ball 0 1) β(Metric.ball 0 1))
Equations
- Complex.UnitDisc.instSMulCommClass_circle = (_ : SMulCommClass β(Metric.sphere 0 1) β(Metric.ball 0 1) β(Metric.ball 0 1))
@[simp]
Equations
- Complex.UnitDisc.closedBallAction = mulActionClosedBallBall
instance
Complex.UnitDisc.isScalarTower_closedBall_closedBall :
IsScalarTower (β(Metric.closedBall 0 1)) (β(Metric.closedBall 0 1)) Complex.UnitDisc
Equations
- Complex.UnitDisc.isScalarTower_closedBall_closedBall = (_ : IsScalarTower β(Metric.closedBall 0 1) β(Metric.closedBall 0 1) β(Metric.ball 0 1))
Equations
- Complex.UnitDisc.isScalarTower_closedBall = (_ : IsScalarTower β(Metric.closedBall 0 1) β(Metric.ball 0 1) β(Metric.ball 0 1))
Equations
Equations
instance
Complex.UnitDisc.instSMulCommClass_circle_closedBall :
SMulCommClass (β₯circle) (β(Metric.closedBall 0 1)) Complex.UnitDisc
Equations
- Complex.UnitDisc.instSMulCommClass_circle_closedBall = (_ : SMulCommClass β(Metric.sphere 0 1) β(Metric.closedBall 0 1) β(Metric.ball 0 1))
instance
Complex.UnitDisc.instSMulCommClass_closedBall_circle :
SMulCommClass (β(Metric.closedBall 0 1)) (β₯circle) Complex.UnitDisc
Equations
- Complex.UnitDisc.instSMulCommClass_closedBall_circle = (_ : SMulCommClass (β(Metric.closedBall 0 1)) (β₯circle) Complex.UnitDisc)
@[simp]
theorem
Complex.UnitDisc.coe_smul_closedBall
(z : β(Metric.closedBall 0 1))
(w : Complex.UnitDisc)
:
@[simp]
@[simp]
@[simp]
@[simp]
Conjugate point of the unit disc.
Equations
- Complex.UnitDisc.conj z = Complex.UnitDisc.mk ((starRingEnd β) βz) (_ : Complex.abs ((starRingEnd β) βz) < 1)
Instances For
@[simp]
theorem
Complex.UnitDisc.coe_conj
(z : Complex.UnitDisc)
:
β(Complex.UnitDisc.conj z) = (starRingEnd β) βz
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]