Documentation

Mathlib.Analysis.InnerProductSpace.Adjoint

Adjoint of operators on Hilbert spaces #

Given an operator A : E →L[𝕜] F, where E and F are Hilbert spaces, its adjoint adjoint A : F →L[𝕜] E is the unique operator such that ⟪x, A y⟫ = ⟪adjoint A x, y⟫ for all x and y.

We then use this to put a C⋆-algebra structure on E →L[𝕜] E with the adjoint as the star operation.

This construction is used to define an adjoint for linear maps (i.e. not continuous) between finite dimensional spaces.

Main definitions #

Implementation notes #

Tags #

adjoint

Adjoint operator #

noncomputable def ContinuousLinearMap.adjointAux {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] :
(E →L[𝕜] F) →L⋆[𝕜] F →L[𝕜] E

The adjoint, as a continuous conjugate-linear map. This is only meant as an auxiliary definition for the main definition adjoint, where this is bundled as a conjugate-linear isometric equivalence.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem ContinuousLinearMap.adjointAux_apply {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] (A : E →L[𝕜] F) (x : F) :
    (ContinuousLinearMap.adjointAux A) x = (LinearIsometryEquiv.symm (InnerProductSpace.toDual 𝕜 E)) ((ContinuousLinearMap.toSesqForm A) x)
    theorem ContinuousLinearMap.adjointAux_inner_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] (A : E →L[𝕜] F) (x : E) (y : F) :
    (ContinuousLinearMap.adjointAux A) y, x⟫_𝕜 = y, A x⟫_𝕜
    theorem ContinuousLinearMap.adjointAux_inner_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] (A : E →L[𝕜] F) (x : E) (y : F) :
    x, (ContinuousLinearMap.adjointAux A) y⟫_𝕜 = A x, y⟫_𝕜
    theorem ContinuousLinearMap.adjointAux_adjointAux {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) :
    ContinuousLinearMap.adjointAux (ContinuousLinearMap.adjointAux A) = A
    @[simp]
    theorem ContinuousLinearMap.adjointAux_norm {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) :
    ContinuousLinearMap.adjointAux A = A
    def ContinuousLinearMap.adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] :
    (E →L[𝕜] F) ≃ₗᵢ⋆[𝕜] F →L[𝕜] E

    The adjoint of a bounded operator from Hilbert space E to Hilbert space F.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem ContinuousLinearMap.adjoint_inner_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) (y : F) :
      (ContinuousLinearMap.adjoint A) y, x⟫_𝕜 = y, A x⟫_𝕜

      The fundamental property of the adjoint.

      theorem ContinuousLinearMap.adjoint_inner_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) (y : F) :
      x, (ContinuousLinearMap.adjoint A) y⟫_𝕜 = A x, y⟫_𝕜

      The fundamental property of the adjoint.

      @[simp]
      theorem ContinuousLinearMap.adjoint_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) :
      ContinuousLinearMap.adjoint (ContinuousLinearMap.adjoint A) = A

      The adjoint is involutive.

      @[simp]
      theorem ContinuousLinearMap.adjoint_comp {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [InnerProductSpace 𝕜 G] [CompleteSpace E] [CompleteSpace G] [CompleteSpace F] (A : F →L[𝕜] G) (B : E →L[𝕜] F) :
      ContinuousLinearMap.adjoint (ContinuousLinearMap.comp A B) = ContinuousLinearMap.comp (ContinuousLinearMap.adjoint B) (ContinuousLinearMap.adjoint A)

      The adjoint of the composition of two operators is the composition of the two adjoints in reverse order.

      theorem ContinuousLinearMap.apply_norm_sq_eq_inner_adjoint_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) :
      A x ^ 2 = IsROrC.re (ContinuousLinearMap.comp (ContinuousLinearMap.adjoint A) A) x, x⟫_𝕜
      theorem ContinuousLinearMap.apply_norm_eq_sqrt_inner_adjoint_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) :
      A x = Real.sqrt (IsROrC.re (ContinuousLinearMap.comp (ContinuousLinearMap.adjoint A) A) x, x⟫_𝕜)
      theorem ContinuousLinearMap.apply_norm_sq_eq_inner_adjoint_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) :
      A x ^ 2 = IsROrC.re x, (ContinuousLinearMap.comp (ContinuousLinearMap.adjoint A) A) x⟫_𝕜
      theorem ContinuousLinearMap.apply_norm_eq_sqrt_inner_adjoint_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) :
      A x = Real.sqrt (IsROrC.re x, (ContinuousLinearMap.comp (ContinuousLinearMap.adjoint A) A) x⟫_𝕜)
      theorem ContinuousLinearMap.eq_adjoint_iff {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (B : F →L[𝕜] E) :
      A = ContinuousLinearMap.adjoint B ∀ (x : E) (y : F), A x, y⟫_𝕜 = x, B y⟫_𝕜

      The adjoint is unique: a map A is the adjoint of B iff it satisfies ⟪A x, y⟫ = ⟪x, B y⟫ for all x and y.

      @[simp]
      theorem ContinuousLinearMap.adjoint_id {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] :
      ContinuousLinearMap.adjoint (ContinuousLinearMap.id 𝕜 E) = ContinuousLinearMap.id 𝕜 E
      theorem Submodule.adjoint_subtypeL {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (U : Submodule 𝕜 E) [CompleteSpace U] :
      ContinuousLinearMap.adjoint (Submodule.subtypeL U) = orthogonalProjection U
      theorem Submodule.adjoint_orthogonalProjection {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (U : Submodule 𝕜 E) [CompleteSpace U] :
      ContinuousLinearMap.adjoint (orthogonalProjection U) = Submodule.subtypeL U
      theorem ContinuousLinearMap.star_eq_adjoint {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (A : E →L[𝕜] E) :
      star A = ContinuousLinearMap.adjoint A
      theorem ContinuousLinearMap.isSelfAdjoint_iff' {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} :
      IsSelfAdjoint A ContinuousLinearMap.adjoint A = A

      A continuous linear operator is self-adjoint iff it is equal to its adjoint.

      theorem ContinuousLinearMap.norm_adjoint_comp_self {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) :
      ContinuousLinearMap.comp (ContinuousLinearMap.adjoint A) A = A * A
      theorem ContinuousLinearMap.isAdjointPair_inner {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) :
      LinearMap.IsAdjointPair sesqFormOfInner sesqFormOfInner A (ContinuousLinearMap.adjoint A)

      Self-adjoint operators #

      theorem IsSelfAdjoint.adjoint_eq {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} (hA : IsSelfAdjoint A) :
      ContinuousLinearMap.adjoint A = A
      theorem IsSelfAdjoint.isSymmetric {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} (hA : IsSelfAdjoint A) :

      Every self-adjoint operator on an inner product space is symmetric.

      theorem IsSelfAdjoint.conj_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : IsSelfAdjoint T) (S : E →L[𝕜] F) :
      IsSelfAdjoint (ContinuousLinearMap.comp S (ContinuousLinearMap.comp T (ContinuousLinearMap.adjoint S)))

      Conjugating preserves self-adjointness.

      theorem IsSelfAdjoint.adjoint_conj {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : IsSelfAdjoint T) (S : F →L[𝕜] E) :
      IsSelfAdjoint (ContinuousLinearMap.comp (ContinuousLinearMap.adjoint S) (ContinuousLinearMap.comp T S))

      Conjugating preserves self-adjointness.

      The orthogonal projection is self-adjoint.

      def LinearMap.IsSymmetric.toSelfAdjoint {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →ₗ[𝕜] E} (hT : LinearMap.IsSymmetric T) :
      (selfAdjoint (E →L[𝕜] E))

      The Hellinger--Toeplitz theorem: Construct a self-adjoint operator from an everywhere defined symmetric operator.

      Equations
      Instances For
        def LinearMap.adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] :
        (E →ₗ[𝕜] F) ≃ₗ⋆[𝕜] F →ₗ[𝕜] E

        The adjoint of an operator from the finite-dimensional inner product space E to the finite-dimensional inner product space F.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem LinearMap.adjoint_toContinuousLinearMap {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) :
          LinearMap.toContinuousLinearMap (LinearMap.adjoint A) = ContinuousLinearMap.adjoint (LinearMap.toContinuousLinearMap A)
          theorem LinearMap.adjoint_eq_toCLM_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) :
          LinearMap.adjoint A = (ContinuousLinearMap.adjoint (LinearMap.toContinuousLinearMap A))
          theorem LinearMap.adjoint_inner_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) (x : E) (y : F) :
          (LinearMap.adjoint A) y, x⟫_𝕜 = y, A x⟫_𝕜

          The fundamental property of the adjoint.

          theorem LinearMap.adjoint_inner_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) (x : E) (y : F) :
          x, (LinearMap.adjoint A) y⟫_𝕜 = A x, y⟫_𝕜

          The fundamental property of the adjoint.

          @[simp]
          theorem LinearMap.adjoint_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) :
          LinearMap.adjoint (LinearMap.adjoint A) = A

          The adjoint is involutive.

          @[simp]
          theorem LinearMap.adjoint_comp {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [InnerProductSpace 𝕜 G] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] [FiniteDimensional 𝕜 G] (A : F →ₗ[𝕜] G) (B : E →ₗ[𝕜] F) :
          LinearMap.adjoint (A ∘ₗ B) = LinearMap.adjoint B ∘ₗ LinearMap.adjoint A

          The adjoint of the composition of two operators is the composition of the two adjoints in reverse order.

          theorem LinearMap.eq_adjoint_iff {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
          A = LinearMap.adjoint B ∀ (x : E) (y : F), A x, y⟫_𝕜 = x, B y⟫_𝕜

          The adjoint is unique: a map A is the adjoint of B iff it satisfies ⟪A x, y⟫ = ⟪x, B y⟫ for all x and y.

          theorem LinearMap.eq_adjoint_iff_basis {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι₁ : Type u_5} {ι₂ : Type u_6} (b₁ : Basis ι₁ 𝕜 E) (b₂ : Basis ι₂ 𝕜 F) (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
          A = LinearMap.adjoint B ∀ (i₁ : ι₁) (i₂ : ι₂), A (b₁ i₁), b₂ i₂⟫_𝕜 = b₁ i₁, B (b₂ i₂)⟫_𝕜

          The adjoint is unique: a map A is the adjoint of B iff it satisfies ⟪A x, y⟫ = ⟪x, B y⟫ for all basis vectors x and y.

          theorem LinearMap.eq_adjoint_iff_basis_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι : Type u_5} (b : Basis ι 𝕜 E) (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
          A = LinearMap.adjoint B ∀ (i : ι) (y : F), A (b i), y⟫_𝕜 = b i, B y⟫_𝕜
          theorem LinearMap.eq_adjoint_iff_basis_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι : Type u_5} (b : Basis ι 𝕜 F) (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
          A = LinearMap.adjoint B ∀ (i : ι) (x : E), A x, b i⟫_𝕜 = x, B (b i)⟫_𝕜

          E →ₗ[𝕜] E is a star algebra with the adjoint as the star operation.

          Equations
          • One or more equations did not get rendered due to their size.
          theorem LinearMap.star_eq_adjoint {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (A : E →ₗ[𝕜] E) :
          star A = LinearMap.adjoint A
          theorem LinearMap.isSelfAdjoint_iff' {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {A : E →ₗ[𝕜] E} :
          IsSelfAdjoint A LinearMap.adjoint A = A

          A continuous linear operator is self-adjoint iff it is equal to its adjoint.

          theorem LinearMap.isAdjointPair_inner {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) :
          LinearMap.IsAdjointPair sesqFormOfInner sesqFormOfInner A (LinearMap.adjoint A)
          theorem LinearMap.isSymmetric_adjoint_mul_self {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) :
          LinearMap.IsSymmetric (LinearMap.adjoint T * T)

          The Gram operator T†T is symmetric.

          theorem LinearMap.re_inner_adjoint_mul_self_nonneg {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) (x : E) :
          0 IsROrC.re x, (LinearMap.adjoint T * T) x⟫_𝕜

          The Gram operator T†T is a positive operator.

          @[simp]
          theorem LinearMap.im_inner_adjoint_mul_self_eq_zero {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) (x : E) :
          IsROrC.im x, (LinearMap.adjoint T) (T x)⟫_𝕜 = 0
          theorem Matrix.toLin_conjTranspose {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] {m : Type u_5} {n : Type u_6} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (v₁ : OrthonormalBasis n 𝕜 E) (v₂ : OrthonormalBasis m 𝕜 F) (A : Matrix m n 𝕜) :

          The linear map associated to the conjugate transpose of a matrix corresponding to two orthonormal bases is the adjoint of the linear map associated to the matrix.

          theorem LinearMap.toMatrix_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [IsROrC 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] {m : Type u_5} {n : Type u_6} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (v₁ : OrthonormalBasis n 𝕜 E) (v₂ : OrthonormalBasis m 𝕜 F) (f : E →ₗ[𝕜] F) :

          The matrix associated to the adjoint of a linear map corresponding to two orthonormal bases is the conjugate tranpose of the matrix associated to the linear map.

          @[simp]
          theorem LinearMap.toMatrixOrthonormal_apply {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) :
          ∀ (a : E →ₗ[𝕜] E), (LinearMap.toMatrixOrthonormal v₁) a = ((LinearMap.toMatrix (OrthonormalBasis.toBasis v₁) (OrthonormalBasis.toBasis v₁))).toAddHom.toFun a
          def LinearMap.toMatrixOrthonormal {𝕜 : Type u_1} {E : Type u_2} [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) :
          (E →ₗ[𝕜] E) ≃⋆ₐ[𝕜] Matrix n n 𝕜

          The star algebra equivalence between the linear endomorphisms of finite-dimensional inner product space and square matrices induced by the choice of an orthonormal basis.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem Matrix.toEuclideanLin_conjTranspose_eq_adjoint {𝕜 : Type u_1} [IsROrC 𝕜] {m : Type u_5} {n : Type u_6} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] (A : Matrix m n 𝕜) :
            Matrix.toEuclideanLin (Matrix.conjTranspose A) = LinearMap.adjoint (Matrix.toEuclideanLin A)

            The adjoint of the linear map associated to a matrix is the linear map associated to the conjugate transpose of that matrix.