Lemmas about exp
on Quaternion
s #
This file contains results about exp
on Quaternion ℝ
.
Main results #
Quaternion.exp_eq
: the general expansion of the quaternion exponential in terms ofReal.cos
andReal.sin
.Quaternion.exp_of_re_eq_zero
: the special case when the quaternion has a zero real part.Quaternion.norm_exp
: the norm of the quaternion exponential is the norm of the exponential of the real part.
The even terms of expSeries
are real, and correspond to the series for $\cos ‖q‖$.
The odd terms of expSeries
are real, and correspond to the series for
$\frac{q}{‖q‖} \sin ‖q‖$.
theorem
Quaternion.hasSum_expSeries_of_imaginary
{q : Quaternion ℝ}
(hq : q.re = 0)
{c : ℝ}
{s : ℝ}
(hc : HasSum (fun (n : ℕ) => (-1) ^ n * ‖q‖ ^ (2 * n) / ↑(Nat.factorial (2 * n))) c)
(hs : HasSum (fun (n : ℕ) => (-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(Nat.factorial (2 * n + 1))) s)
:
Auxiliary result; if the power series corresponding to Real.cos
and Real.sin
evaluated
at ‖q‖
tend to c
and s
, then the exponential series tends to c + (s / ‖q‖)
.
theorem
Quaternion.exp_eq
(q : Quaternion ℝ)
:
NormedSpace.exp ℝ q = NormedSpace.exp ℝ q.re • (↑(Real.cos ‖Quaternion.im q‖) + (Real.sin ‖Quaternion.im q‖ / ‖Quaternion.im q‖) • Quaternion.im q)
The closed form for the quaternion exponential on arbitrary quaternions.
theorem
Quaternion.re_exp
(q : Quaternion ℝ)
:
(NormedSpace.exp ℝ q).re = NormedSpace.exp ℝ q.re * Real.cos ‖q - ↑q.re‖
theorem
Quaternion.im_exp
(q : Quaternion ℝ)
:
Quaternion.im (NormedSpace.exp ℝ q) = (NormedSpace.exp ℝ q.re * (Real.sin ‖Quaternion.im q‖ / ‖Quaternion.im q‖)) • Quaternion.im q
theorem
Quaternion.normSq_exp
(q : Quaternion ℝ)
:
Quaternion.normSq (NormedSpace.exp ℝ q) = NormedSpace.exp ℝ q.re ^ 2
@[simp]
Note that this implies that exponentials of pure imaginary quaternions are unit quaternions
since in that case the RHS is 1
via exp_zero
and norm_one
.