Documentation

Mathlib.CategoryTheory.Bicategory.Extension

Extensions and lifts in bicategories #

We introduce the concept of extensions and lifts within the bicategorical framework. These concepts are defined by commutative diagrams in the (1-)categorical context. Within the bicategorical framework, commutative diagrams are replaced by 2-morphisms. Depending on the orientation of the 2-morphisms, we define both left and right extensions (likewise for lifts). The use of left and right here is a common one in the theory of Kan extensions.

Implementation notes #

We define extensions and lifts as objects in certain comma categories (StructuredArrow for left, and CostructuredArrow for right). See the file CategoryTheory.StructuredArrow for properties about these categories. We introduce some intuitive aliases. For example, LeftExtension.extension is an alias for Comma.right.

References #

@[inline, reducible]
abbrev CategoryTheory.Bicategory.LeftExtension {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : a b) (g : a c) :
Type (max v w)

Triangle diagrams for (left) extensions.

  b
  △ \
  |   \ extension  △
f |     \          | unit
  |       ◿
  a - - - ▷ c
      g
Equations
Instances For
    @[inline, reducible]
    abbrev CategoryTheory.Bicategory.LeftExtension.extension {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} (t : CategoryTheory.Bicategory.LeftExtension f g) :
    b c

    The extension of g along f.

    Equations
    Instances For
      @[inline, reducible]

      The 2-morphism filling the triangle diagram.

      Equations
      Instances For
        Equations
        @[inline, reducible]
        abbrev CategoryTheory.Bicategory.LeftLift {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : b a) (g : c a) :
        Type (max v w)

        Triangle diagrams for (left) lifts.

                    b
                  ◹ |
           lift /   |      △
              /     | f    | unit
            /       ▽
          c - - - ▷ a
               g
        
        Equations
        Instances For
          @[inline, reducible]
          abbrev CategoryTheory.Bicategory.LeftLift.lift {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.LeftLift f g) :
          c b

          The lift of g along f.

          Equations
          Instances For
            @[inline, reducible]

            The 2-morphism filling the triangle diagram.

            Equations
            Instances For
              Equations
              @[inline, reducible]
              abbrev CategoryTheory.Bicategory.RightExtension {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : a b) (g : a c) :
              Type (max v w)

              Triangle diagrams for (right) extensions.

                b
                △ \
                |   \ extension  | counit
              f |     \          ▽
                |       ◿
                a - - - ▷ c
                    g
              
              Equations
              Instances For
                @[inline, reducible]

                The extension of g along f.

                Equations
                Instances For
                  @[inline, reducible]

                  The 2-morphism filling the triangle diagram.

                  Equations
                  Instances For
                    Equations
                    @[inline, reducible]
                    abbrev CategoryTheory.Bicategory.RightLift {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : b a) (g : c a) :
                    Type (max v w)

                    Triangle diagrams for (right) lifts.

                                b
                              ◹ |
                       lift /   |      | counit
                          /     | f    ▽
                        /       ▽
                      c - - - ▷ a
                           g
                    
                    Equations
                    Instances For
                      @[inline, reducible]
                      abbrev CategoryTheory.Bicategory.RightLift.lift {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.RightLift f g) :
                      c b

                      The lift of g along f.

                      Equations
                      Instances For
                        @[inline, reducible]

                        The 2-morphism filling the triangle diagram.

                        Equations
                        Instances For
                          Equations