The category of elements #
This file defines the category of elements, also known as (a special case of) the Grothendieck construction.
Given a functor F : C ⥤ Type
, an object of F.Elements
is a pair (X : C, x : F.obj X)
.
A morphism (X, x) ⟶ (Y, y)
is a morphism f : X ⟶ Y
in C
, so F.map f
takes x
to y
.
Implementation notes #
This construction is equivalent to a special case of a comma construction, so this is mostly just a
more convenient API. We prove the equivalence in
CategoryTheory.CategoryOfElements.structuredArrowEquivalence
.
References #
- [Emily Riehl, Category Theory in Context, Section 2.4][riehl2017]
Tags #
category of elements, Grothendieck construction, comma category
The type of objects for the category of elements of a functor F : C ⥤ Type
is a pair (X : C, x : F.obj X)
.
Equations
- CategoryTheory.Functor.Elements F = ((c : C) × F.toPrefunctor.obj c)
Instances For
The category structure on F.Elements
, for F : C ⥤ Type
.
A morphism (X, x) ⟶ (Y, y)
is a morphism f : X ⟶ Y
in C
, so F.map f
takes x
to y
.
Equations
- CategoryTheory.categoryOfElements F = CategoryTheory.Category.mk
Equations
- One or more equations did not get rendered due to their size.
The functor out of the category of elements which forgets the element.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A natural transformation between functors induces a functor between the categories of elements.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The forward direction of the equivalence F.Elements ≅ (*, F)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The reverse direction of the equivalence F.Elements ≅ (*, F)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The equivalence between the category of elements F.Elements
and the comma category (*, F)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The forward direction of the equivalence F.Elementsᵒᵖ ≅ (yoneda, F)
,
given by CategoryTheory.yonedaSections
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The reverse direction of the equivalence F.Elementsᵒᵖ ≅ (yoneda, F)
,
given by CategoryTheory.yonedaEquiv
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The unit of the equivalence F.Elementsᵒᵖ ≅ (yoneda, F)
is indeed iso.
The counit of the equivalence F.Elementsᵒᵖ ≅ (yoneda, F)
is indeed iso.
The equivalence F.Elementsᵒᵖ ≅ (yoneda, F)
given by yoneda lemma.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The equivalence (-.Elements)ᵒᵖ ≅ (yoneda, -)
of is actually a natural isomorphism of functors.