Galois objects in Galois categories #
We define when a connected object of a Galois category C
is Galois in a fiber functor independent
way and show equivalent characterisations.
Main definitions #
IsGalois
: Connected objectX
ofC
such thatX / Aut X
is terminal.
Main results #
galois_iff_pretransitive
: A connected objectX
is Galois if and only ifAut X
acts transitively onF.obj X
for a fiber functorF
.
noncomputable instance
CategoryTheory.PreGaloisCategory.instPreservesColimitsOfShapeFintypeCatInstCategoryFintypeCatTypeTypesSingleObjCategoryToMonoidToDivInvMonoidIncl
{G : Type v}
[Group G]
[Finite G]
:
Equations
- One or more equations did not get rendered due to their size.
class
CategoryTheory.PreGaloisCategory.IsGalois
{C : Type u₁}
[CategoryTheory.Category.{u₂, u₁} C]
[CategoryTheory.GaloisCategory C]
(X : C)
extends
CategoryTheory.PreGaloisCategory.IsConnected
:
A connected object X
of C
is Galois if the quotient X / Aut X
is terminal.
- notInitial : CategoryTheory.Limits.IsInitial X → False
- noTrivialComponent : ∀ (Y : C) (i : Y ⟶ X) [inst : CategoryTheory.Mono i], (CategoryTheory.Limits.IsInitial Y → False) → CategoryTheory.IsIso i
- quotientByAutTerminal : Nonempty (CategoryTheory.Limits.IsTerminal (CategoryTheory.Limits.colimit (CategoryTheory.SingleObj.functor (CategoryTheory.Aut.toEnd X))))
Instances
instance
CategoryTheory.PreGaloisCategory.autMulFiber
{C : Type u₁}
[CategoryTheory.Category.{u₂, u₁} C]
(F : CategoryTheory.Functor C FintypeCat)
(X : C)
:
MulAction (CategoryTheory.Aut X) ↑(F.toPrefunctor.obj X)
The natural action of Aut X
on F.obj X
.
Equations
- One or more equations did not get rendered due to their size.
noncomputable def
CategoryTheory.PreGaloisCategory.quotientByAutTerminalEquivUniqueQuotient
{C : Type u₁}
[CategoryTheory.Category.{u₂, u₁} C]
[CategoryTheory.GaloisCategory C]
(F : CategoryTheory.Functor C FintypeCat)
[CategoryTheory.PreGaloisCategory.FiberFunctor F]
(X : C)
[CategoryTheory.PreGaloisCategory.IsConnected X]
:
CategoryTheory.Limits.IsTerminal
(CategoryTheory.Limits.colimit (CategoryTheory.SingleObj.functor (CategoryTheory.Aut.toEnd X))) ≃ Unique (MulAction.orbitRel.Quotient (CategoryTheory.Aut X) ↑(F.toPrefunctor.obj X))
For a connected object X
of C
, the quotient X / Aut X
is terminal if and only if
the quotient F.obj X / Aut X
has exactly one element.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.PreGaloisCategory.isGalois_iff_aux
{C : Type u₁}
[CategoryTheory.Category.{u₂, u₁} C]
[CategoryTheory.GaloisCategory C]
(X : C)
[CategoryTheory.PreGaloisCategory.IsConnected X]
:
theorem
CategoryTheory.PreGaloisCategory.isGalois_iff_pretransitive
{C : Type u₁}
[CategoryTheory.Category.{u₂, u₁} C]
[CategoryTheory.GaloisCategory C]
(F : CategoryTheory.Functor C FintypeCat)
[CategoryTheory.PreGaloisCategory.FiberFunctor F]
(X : C)
[CategoryTheory.PreGaloisCategory.IsConnected X]
:
CategoryTheory.PreGaloisCategory.IsGalois X ↔ MulAction.IsPretransitive (CategoryTheory.Aut X) ↑(F.toPrefunctor.obj X)
Given a fiber functor F
and a connected object X
of C
. Then X
is Galois if and only if
the natural action of Aut X
on F.obj X
is transitive.
noncomputable def
CategoryTheory.PreGaloisCategory.isTerminalQuotientOfIsGalois
{C : Type u₁}
[CategoryTheory.Category.{u₂, u₁} C]
[CategoryTheory.GaloisCategory C]
(X : C)
[CategoryTheory.PreGaloisCategory.IsGalois X]
:
If X
is Galois, the quotient X / Aut X
is terminal.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.PreGaloisCategory.isPretransitive_of_isGalois
{C : Type u₁}
[CategoryTheory.Category.{u₂, u₁} C]
[CategoryTheory.GaloisCategory C]
(F : CategoryTheory.Functor C FintypeCat)
[CategoryTheory.PreGaloisCategory.FiberFunctor F]
(X : C)
[CategoryTheory.PreGaloisCategory.IsGalois X]
:
MulAction.IsPretransitive (CategoryTheory.Aut X) ↑(F.toPrefunctor.obj X)
If X
is Galois, then the action of Aut X
on F.obj X
is
transitive for every fiber functor F
.
Equations
- (_ : MulAction.IsPretransitive (CategoryTheory.Aut X) ↑(F.toPrefunctor.obj X)) = (_ : MulAction.IsPretransitive (CategoryTheory.Aut X) ↑(F.toPrefunctor.obj X))