Definition and basic properties of Galois categories #
We define the notion of a Galois category and a fiber functor as in SGA1, following the definitions in Lenstras notes (see below for a reference).
Main definitions #
PreGaloisCategory
: defining properties of Galois categories not involving a fiber functorFiberFunctor
: a fiber functor from aPreGaloisCategory
toFintypeCat
GaloisCategory
: aPreGaloisCategory
that admits aFiberFunctor
IsConnected
: an object of a category is connected if it is not initial and does not have non-trivial subobjects
Implementation details #
We mostly follow Def 3.1 in Lenstras notes. In axiom (G3) we omit the factorisation of morphisms in epimorphisms and monomorphisms as this is not needed for the proof of the fundamental theorem on Galois categories (and then follows from it).
References #
- H. W. Lenstra. Galois theory for schemes
A category C
is a PreGalois category if it satisfies all properties
of a Galois category in the sense of SGA1 that do not involve a fiber functor.
A Galois category should furthermore admit a fiber functor.
The only difference between [PreGaloisCategory C] (F : C ⥤ FintypeCat) [FiberFunctor F]
and
[GaloisCategory C]
is that the former fixes one fiber functor F
.
Definition of a (Pre)Galois category. Lenstra, Def 3.1, (G1)-(G3)
- hasTerminal : CategoryTheory.Limits.HasTerminal C
C
has a terminal object (G1). - hasPullbacks : CategoryTheory.Limits.HasPullbacks C
C
has pullbacks (G1). - hasFiniteCoproducts : CategoryTheory.Limits.HasFiniteCoproducts C
C
has finite coproducts (G2). - hasQuotientsByFiniteGroups : ∀ (G : Type u₂) [inst : Group G] [inst_1 : Finite G], CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.SingleObj G) C
C
has quotients by finite groups (G2). - monoInducesIsoOnDirectSummand : ∀ {X Y : C} (i : X ⟶ Y) [inst : CategoryTheory.Mono i], ∃ (Z : C) (u : Z ⟶ Y), Nonempty (CategoryTheory.Limits.IsColimit (CategoryTheory.Limits.BinaryCofan.mk i u))
Every monomorphism in
C
induces an isomorphism on a direct summand (G3).
Instances
Definition of a fiber functor from a Galois category. Lenstra, Def 3.1, (G4)-(G6)
- preservesTerminalObjects : CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete PEmpty.{1}) F
F
preserves terminal objects (G4). - preservesPullbacks : CategoryTheory.Limits.PreservesLimitsOfShape CategoryTheory.Limits.WalkingCospan F
F
preserves pullbacks (G4). - preservesFiniteCoproducts : CategoryTheory.Limits.PreservesFiniteCoproducts F
F
preserves finite coproducts (G5). - preservesEpis : CategoryTheory.Functor.PreservesEpimorphisms F
F
preserves epimorphisms (G5). - preservesQuotientsByFiniteGroups : (G : Type u₂) → [inst : Group G] → [inst_1 : Finite G] → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.SingleObj G) F
F
preserves quotients by finite groups (G5). - reflectsIsos : CategoryTheory.ReflectsIsomorphisms F
F
reflects isomorphisms (G6).
Instances
An object of a category C
is connected if it is not initial
and has no non-trivial subobjects. Lenstra, 3.12.
- notInitial : CategoryTheory.Limits.IsInitial X → False
X
is not an initial object. - noTrivialComponent : ∀ (Y : C) (i : Y ⟶ X) [inst : CategoryTheory.Mono i], (CategoryTheory.Limits.IsInitial Y → False) → CategoryTheory.IsIso i
X
has no non-trivial subobjects.
Instances
A functor is said to preserve connectedness if whenever X : C
is connected,
also F.obj X
is connected.
- preserves : ∀ {X : C} [inst : CategoryTheory.PreGaloisCategory.IsConnected X], CategoryTheory.PreGaloisCategory.IsConnected (F.toPrefunctor.obj X)
F.obj X
is connected ifX
is connected.
Instances
Equations
Equations
Equations
- (_ : CategoryTheory.Limits.HasEqualizers C) = (_ : CategoryTheory.Limits.HasEqualizers C)
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- CategoryTheory.PreGaloisCategory.FiberFunctor.instPreservesFiniteLimitsFintypeCatInstCategoryFintypeCat = CategoryTheory.Limits.preservesFiniteLimitsOfPreservesTerminalAndPullbacks F
Fiber functors reflect monomorphisms.
Equations
Fiber functors are faithful.
Equations
- (_ : CategoryTheory.Faithful F) = (_ : CategoryTheory.Faithful F)
An object is initial if and only if its fiber is empty.
An object is not initial if and only if its fiber is nonempty.
An object whose fiber is inhabited is not initial.
The fiber of a connected object is nonempty.
The evaluation map is injective for connected objects.
The evaluation map on automorphisms is injective for connected objects.
A PreGaloisCategory
is a GaloisCategory
if it admits a fiber functor.
- hasTerminal : CategoryTheory.Limits.HasTerminal C
- hasPullbacks : CategoryTheory.Limits.HasPullbacks C
- hasFiniteCoproducts : CategoryTheory.Limits.HasFiniteCoproducts C
- hasQuotientsByFiniteGroups : ∀ (G : Type u₂) [inst : Group G] [inst_1 : Finite G], CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.SingleObj G) C
- monoInducesIsoOnDirectSummand : ∀ {X Y : C} (i : X ⟶ Y) [inst : CategoryTheory.Mono i], ∃ (Z : C) (u : Z ⟶ Y), Nonempty (CategoryTheory.Limits.IsColimit (CategoryTheory.Limits.BinaryCofan.mk i u))
- hasFiberFunctor : ∃ (F : CategoryTheory.Functor C FintypeCat), Nonempty (CategoryTheory.PreGaloisCategory.FiberFunctor F)
Instances
In a GaloisCategory
the set of morphisms out of a connected object is finite.
In a GaloisCategory
the set of automorphism of a connected object is finite.
Equations
- (_ : Finite (CategoryTheory.Aut A)) = (_ : Finite (CategoryTheory.Aut A))