Limit preservation properties of functor.op
and related constructions #
We formulate conditions about F
which imply that F.op
, F.unop
, F.left_op
and F.right_op
preserve certain (co)limits.
Future work #
- Dually, it is possible to formulate conditions about
F.op
ec. forF
to preserve certain (co)limits.
If F : C ⥤ D
preserves colimits of K.left_op : Jᵒᵖ ⥤ C
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves
limits of K : J ⥤ Cᵒᵖ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ Dᵒᵖ
preserves colimits of K.left_op : Jᵒᵖ ⥤ C
, then F.left_op : Cᵒᵖ ⥤ D
preserves limits of K : J ⥤ Cᵒᵖ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ D
preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.right_op : C ⥤ Dᵒᵖ
preserves
limits of K : J ⥤ C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.unop : C ⥤ D
preserves
limits of K : J ⥤ C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ D
preserves limits of K.left_op : Jᵒᵖ ⥤ C
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves
colimits of K : J ⥤ Cᵒᵖ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ Dᵒᵖ
preserves limits of K.left_op : Jᵒᵖ ⥤ C
, then F.left_op : Cᵒᵖ ⥤ D
preserves
colimits of K : J ⥤ Cᵒᵖ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ D
preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.right_op : C ⥤ Dᵒᵖ
preserves
colimits of K : J ⥤ C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.unop : C ⥤ D
preserves
colimits of K : J ⥤ C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If F : C ⥤ D
preserves colimits of shape Jᵒᵖ
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of
shape J
.
Equations
- CategoryTheory.Limits.preservesLimitsOfShapeOp J F = CategoryTheory.Limits.PreservesLimitsOfShape.mk
Instances For
If F : C ⥤ Dᵒᵖ
preserves colimits of shape Jᵒᵖ
, then F.left_op : Cᵒᵖ ⥤ D
preserves limits
of shape J
.
Equations
- CategoryTheory.Limits.preservesLimitsOfShapeLeftOp J F = CategoryTheory.Limits.PreservesLimitsOfShape.mk
Instances For
If F : Cᵒᵖ ⥤ D
preserves colimits of shape Jᵒᵖ
, then F.right_op : C ⥤ Dᵒᵖ
preserves limits
of shape J
.
Equations
- CategoryTheory.Limits.preservesLimitsOfShapeRightOp J F = CategoryTheory.Limits.PreservesLimitsOfShape.mk
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of shape Jᵒᵖ
, then F.unop : C ⥤ D
preserves limits of
shape J
.
Equations
- CategoryTheory.Limits.preservesLimitsOfShapeUnop J F = CategoryTheory.Limits.PreservesLimitsOfShape.mk
Instances For
If F : C ⥤ D
preserves limits of shape Jᵒᵖ
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of
shape J
.
Equations
- CategoryTheory.Limits.preservesColimitsOfShapeOp J F = CategoryTheory.Limits.PreservesColimitsOfShape.mk
Instances For
If F : C ⥤ Dᵒᵖ
preserves limits of shape Jᵒᵖ
, then F.left_op : Cᵒᵖ ⥤ D
preserves colimits
of shape J
.
Equations
- CategoryTheory.Limits.preservesColimitsOfShapeLeftOp J F = CategoryTheory.Limits.PreservesColimitsOfShape.mk
Instances For
If F : Cᵒᵖ ⥤ D
preserves limits of shape Jᵒᵖ
, then F.right_op : C ⥤ Dᵒᵖ
preserves colimits
of shape J
.
Equations
- CategoryTheory.Limits.preservesColimitsOfShapeRightOp J F = CategoryTheory.Limits.PreservesColimitsOfShape.mk
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of shape Jᵒᵖ
, then F.unop : C ⥤ D
preserves colimits
of shape J
.
Equations
- CategoryTheory.Limits.preservesColimitsOfShapeUnop J F = CategoryTheory.Limits.PreservesColimitsOfShape.mk
Instances For
If F : C ⥤ D
preserves colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits.
Equations
- CategoryTheory.Limits.preservesLimitsOp F = CategoryTheory.Limits.PreservesLimitsOfSize.mk
Instances For
If F : C ⥤ Dᵒᵖ
preserves colimits, then F.left_op : Cᵒᵖ ⥤ D
preserves limits.
Equations
- CategoryTheory.Limits.preservesLimitsLeftOp F = CategoryTheory.Limits.PreservesLimitsOfSize.mk
Instances For
If F : Cᵒᵖ ⥤ D
preserves colimits, then F.right_op : C ⥤ Dᵒᵖ
preserves limits.
Equations
- CategoryTheory.Limits.preservesLimitsRightOp F = CategoryTheory.Limits.PreservesLimitsOfSize.mk
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits, then F.unop : C ⥤ D
preserves limits.
Equations
- CategoryTheory.Limits.preservesLimitsUnop F = CategoryTheory.Limits.PreservesLimitsOfSize.mk
Instances For
If F : C ⥤ D
preserves limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits.
Equations
- CategoryTheory.Limits.perservesColimitsOp F = CategoryTheory.Limits.PreservesColimitsOfSize.mk
Instances For
If F : C ⥤ Dᵒᵖ
preserves limits, then F.left_op : Cᵒᵖ ⥤ D
preserves colimits.
Equations
- CategoryTheory.Limits.preservesColimitsLeftOp F = CategoryTheory.Limits.PreservesColimitsOfSize.mk
Instances For
If F : Cᵒᵖ ⥤ D
preserves limits, then F.right_op : C ⥤ Dᵒᵖ
preserves colimits.
Equations
- CategoryTheory.Limits.preservesColimitsRightOp F = CategoryTheory.Limits.PreservesColimitsOfSize.mk
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits, then F.unop : C ⥤ D
preserves colimits.
Equations
- CategoryTheory.Limits.preservesColimitsUnop F = CategoryTheory.Limits.PreservesColimitsOfSize.mk
Instances For
If F : C ⥤ D
preserves finite colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite
limits.
Equations
- CategoryTheory.Limits.preservesFiniteLimitsOp F = CategoryTheory.Limits.PreservesFiniteLimits.mk
Instances For
If F : C ⥤ Dᵒᵖ
preserves finite colimits, then F.left_op : Cᵒᵖ ⥤ D
preserves finite
limits.
Equations
- CategoryTheory.Limits.preservesFiniteLimitsLeftOp F = CategoryTheory.Limits.PreservesFiniteLimits.mk
Instances For
If F : Cᵒᵖ ⥤ D
preserves finite colimits, then F.right_op : C ⥤ Dᵒᵖ
preserves finite
limits.
Equations
- CategoryTheory.Limits.preservesFiniteLimitsRightOp F = CategoryTheory.Limits.PreservesFiniteLimits.mk
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite colimits, then F.unop : C ⥤ D
preserves finite
limits.
Equations
- CategoryTheory.Limits.preservesFiniteLimitsUnop F = CategoryTheory.Limits.PreservesFiniteLimits.mk
Instances For
If F : C ⥤ D
preserves finite limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite
colimits.
Equations
- CategoryTheory.Limits.preservesFiniteColimitsOp F = CategoryTheory.Limits.PreservesFiniteColimits.mk
Instances For
If F : C ⥤ Dᵒᵖ
preserves finite limits, then F.left_op : Cᵒᵖ ⥤ D
preserves finite
colimits.
Equations
- CategoryTheory.Limits.preservesFiniteColimitsLeftOp F = CategoryTheory.Limits.PreservesFiniteColimits.mk
Instances For
If F : Cᵒᵖ ⥤ D
preserves finite limits, then F.right_op : C ⥤ Dᵒᵖ
preserves finite
colimits.
Equations
- CategoryTheory.Limits.preservesFiniteColimitsRightOp F = CategoryTheory.Limits.PreservesFiniteColimits.mk
Instances For
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite limits, then F.unop : C ⥤ D
preserves finite
colimits.
Equations
- CategoryTheory.Limits.preservesFiniteColimitsUnop F = CategoryTheory.Limits.PreservesFiniteColimits.mk