Documentation

Mathlib.CategoryTheory.Limits.VanKampen

Universal colimits and van Kampen colimits #

Main definitions #

References #

A natural transformation is equifibered if every commutative square of the following form is a pullback.

F(X) → F(Y)
 ↓      ↓
G(X) → G(Y)
Equations
Instances For

    A (colimit) cocone over a diagram F : J ⥤ C is universal if it is stable under pullbacks.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A (colimit) cocone over a diagram F : J ⥤ C is van Kampen if for every cocone c' over the pullback of the diagram F' : J ⥤ C', c' is colimiting iff c' is the pullback of c.

      TODO: Show that this is iff the functor C ⥤ Catᵒᵖ sending x to C/x preserves it. TODO: Show that this is iff the inclusion functor C ⥤ Span(C) preserves it.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem CategoryTheory.IsUniversalColimit.map_reflective {J : Type v'} [CategoryTheory.Category.{u', v'} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] {Gl : CategoryTheory.Functor C D} {Gr : CategoryTheory.Functor D C} (adj : Gl Gr) [CategoryTheory.Full Gr] [CategoryTheory.Faithful Gr] {F : CategoryTheory.Functor J D} {c : CategoryTheory.Limits.Cocone (CategoryTheory.Functor.comp F Gr)} (H : CategoryTheory.IsUniversalColimit c) [∀ (X : D) (f : X Gl.toPrefunctor.obj c.pt), CategoryTheory.Limits.HasPullback (Gr.toPrefunctor.map f) (adj.unit.app c.pt)] [(X : D) → (f : X Gl.toPrefunctor.obj c.pt) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan (Gr.toPrefunctor.map f) (adj.unit.app c.pt)) Gl] :
        theorem CategoryTheory.IsVanKampenColimit.map_reflective {J : Type v'} [CategoryTheory.Category.{u', v'} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Limits.HasColimitsOfShape J C] {Gl : CategoryTheory.Functor C D} {Gr : CategoryTheory.Functor D C} (adj : Gl Gr) [CategoryTheory.Full Gr] [CategoryTheory.Faithful Gr] {F : CategoryTheory.Functor J D} {c : CategoryTheory.Limits.Cocone (CategoryTheory.Functor.comp F Gr)} (H : CategoryTheory.IsVanKampenColimit c) [∀ (X : D) (f : X Gl.toPrefunctor.obj c.pt), CategoryTheory.Limits.HasPullback (Gr.toPrefunctor.map f) (adj.unit.app c.pt)] [(X : D) → (f : X Gl.toPrefunctor.obj c.pt) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan (Gr.toPrefunctor.map f) (adj.unit.app c.pt)) Gl] [(X : C) → (i : J) → (f : X c.pt) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f (c.app i)) Gl] :
        theorem CategoryTheory.BinaryCofan.isVanKampen_mk {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (c : CategoryTheory.Limits.BinaryCofan X Y) (cofans : (X Y : C) → CategoryTheory.Limits.BinaryCofan X Y) (colimits : (X Y : C) → CategoryTheory.Limits.IsColimit (cofans X Y)) (cones : {X Y Z : C} → (f : X Z) → (g : Y Z) → CategoryTheory.Limits.PullbackCone f g) (limits : {X Y Z : C} → (f : X Z) → (g : Y Z) → CategoryTheory.Limits.IsLimit (cones f g)) (h₁ : ∀ {X' Y' : C} (αX : X' X) (αY : Y' Y) (f : (cofans X' Y').pt c.pt), CategoryTheory.CategoryStruct.comp αX (CategoryTheory.Limits.BinaryCofan.inl c) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.BinaryCofan.inl (cofans X' Y')) fCategoryTheory.CategoryStruct.comp αY (CategoryTheory.Limits.BinaryCofan.inr c) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.BinaryCofan.inr (cofans X' Y')) fCategoryTheory.IsPullback (CategoryTheory.Limits.BinaryCofan.inl (cofans X' Y')) αX f (CategoryTheory.Limits.BinaryCofan.inl c) CategoryTheory.IsPullback (CategoryTheory.Limits.BinaryCofan.inr (cofans X' Y')) αY f (CategoryTheory.Limits.BinaryCofan.inr c)) (h₂ : {Z : C} → (f : Z c.pt) → CategoryTheory.Limits.IsColimit (CategoryTheory.Limits.BinaryCofan.mk (CategoryTheory.Limits.PullbackCone.fst (cones f (CategoryTheory.Limits.BinaryCofan.inl c))) (CategoryTheory.Limits.PullbackCone.fst (cones f (CategoryTheory.Limits.BinaryCofan.inr c))))) :