Documentation

Mathlib.CategoryTheory.Linear.Yoneda

The Yoneda embedding for R-linear categories #

The Yoneda embedding for R-linear categories C, sends an object X : C to the Module R-valued presheaf on C, with value on Y : Cᵒᵖ given by Module.of R (unop Y ⟶ X).

TODO: linearYoneda R C is R-linear. TODO: In fact, linearYoneda itself is additive and R-linear.

@[simp]
theorem CategoryTheory.linearYoneda_obj_map (R : Type w) [Ring R] (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] (X : C) :
∀ {X_1 Y : Cᵒᵖ} (f : X_1 Y), ((CategoryTheory.linearYoneda R C).toPrefunctor.obj X).toPrefunctor.map f = ModuleCat.ofHom (CategoryTheory.Linear.leftComp R X f.unop)
@[simp]
theorem CategoryTheory.linearYoneda_obj_obj (R : Type w) [Ring R] (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] (X : C) (Y : Cᵒᵖ) :
((CategoryTheory.linearYoneda R C).toPrefunctor.obj X).toPrefunctor.obj Y = ModuleCat.of R (Y.unop X)
@[simp]
theorem CategoryTheory.linearYoneda_map_app (R : Type w) [Ring R] (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] {X₁ : C} {X₂ : C} (f : X₁ X₂) (Y : Cᵒᵖ) :

The Yoneda embedding for R-linear categories C, sending an object X : C to the Module R-valued presheaf on C, with value on Y : Cᵒᵖ given by Module.of R (unop Y ⟶ X).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.linearCoyoneda_obj_obj (R : Type w) [Ring R] (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] (Y : Cᵒᵖ) (X : C) :
    ((CategoryTheory.linearCoyoneda R C).toPrefunctor.obj Y).toPrefunctor.obj X = ModuleCat.of R (Y.unop X)
    @[simp]
    theorem CategoryTheory.linearCoyoneda_obj_map (R : Type w) [Ring R] (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] (Y : Cᵒᵖ) :
    ∀ {X Y_1 : C} (f : X Y_1), ((CategoryTheory.linearCoyoneda R C).toPrefunctor.obj Y).toPrefunctor.map f = ModuleCat.ofHom (CategoryTheory.Linear.rightComp R Y.unop f)
    @[simp]
    theorem CategoryTheory.linearCoyoneda_map_app (R : Type w) [Ring R] (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Linear R C] {Y₁ : Cᵒᵖ} {Y₂ : Cᵒᵖ} (f : Y₁ Y₂) (X : C) :

    The Yoneda embedding for R-linear categories C, sending an object Y : Cᵒᵖ to the Module R-valued copresheaf on C, with value on X : C given by Module.of R (unop Y ⟶ X).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      • One or more equations did not get rendered due to their size.