Sheaves for the extensive topology #
This file characterises sheaves for the extensive topology.
Main result #
isSheaf_iff_preservesFiniteProducts
: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products.
class
CategoryTheory.Presieve.extensive
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X : C}
(R : CategoryTheory.Presieve X)
:
A presieve is extensive if it is finite and its arrows induce an isomorphism from the coproduct to the target.
- arrows_nonempty_isColimit : ∃ (α : Type) (x : Fintype α) (Z : α → C) (π : (a : α) → Z a ⟶ X), R = CategoryTheory.Presieve.ofArrows Z π ∧ Nonempty (CategoryTheory.Limits.IsColimit (CategoryTheory.Limits.Cofan.mk X π))
R
consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources.
Instances
instance
CategoryTheory.instHasPullbacks
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.FinitaryPreExtensive C]
{X : C}
(S : CategoryTheory.Presieve X)
[CategoryTheory.Presieve.extensive S]
:
Equations
theorem
CategoryTheory.isSheafFor_extensive_of_preservesFiniteProducts
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.FinitaryPreExtensive C]
{X : C}
(S : CategoryTheory.Presieve X)
[CategoryTheory.Presieve.extensive S]
(F : CategoryTheory.Functor Cᵒᵖ (Type (max u v)))
[CategoryTheory.Limits.PreservesFiniteProducts F]
:
A finite product preserving presheaf is a sheaf for the extensive topology on a category which is
FinitaryPreExtensive
.
instance
CategoryTheory.instExtensiveSigmaObjHasColimitOfHasColimitsOfShapeDiscreteDiscreteCategoryHasColimitsOfShape_discreteHasFiniteCoproductsOf_fintypeFunctorOfArrowsι
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.FinitaryPreExtensive C]
{α : Type}
[Fintype α]
(Z : α → C)
:
CategoryTheory.Presieve.extensive (CategoryTheory.Presieve.ofArrows Z fun (i : α) => CategoryTheory.Limits.Sigma.ι Z i)
Equations
- One or more equations did not get rendered due to their size.
theorem
CategoryTheory.isSheaf_iff_preservesFiniteProducts
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.FinitaryPreExtensive C]
[CategoryTheory.FinitaryExtensive C]
(F : CategoryTheory.Functor Cᵒᵖ (Type (max u v)))
:
A presheaf on a category which is FinitaryExtensive
is a sheaf iff it preserves finite products.