Documentation

Mathlib.CategoryTheory.Sites.Equivalence

Equivalences of sheaf categories #

Given a site (C, J) and a category D which is equivalent to C, with C and D possibly large and possibly in different universes, we transport the Grothendieck topology J on C to D and prove that the sheaf categories are equivalent.

We also prove that sheafification and the property HasSheafCompose transport nicely over this equivalence, and apply it to essentially small sites. We also provide instances for existence of sufficiently small limits in the sheaf category on the essentially small site.

Main definitions #

@[simp]
theorem CategoryTheory.Equivalence.sheafCongr.functor_obj_val_obj {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type u_2} [CategoryTheory.Category.{u_5, u_2} D] (e : C D) (A : Type u_3) [CategoryTheory.Category.{u_6, u_3} A] (F : CategoryTheory.Sheaf J A) (X : Dᵒᵖ) :
((CategoryTheory.Equivalence.sheafCongr.functor J e A).toPrefunctor.obj F).val.toPrefunctor.obj X = F.val.toPrefunctor.obj (Opposite.op (e.inverse.toPrefunctor.obj X.unop))
@[simp]
theorem CategoryTheory.Equivalence.sheafCongr.functor_map_val_app {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type u_2} [CategoryTheory.Category.{u_5, u_2} D] (e : C D) (A : Type u_3) [CategoryTheory.Category.{u_6, u_3} A] :
∀ {X Y : CategoryTheory.Sheaf J A} (f : X Y) (X_1 : Dᵒᵖ), ((CategoryTheory.Equivalence.sheafCongr.functor J e A).toPrefunctor.map f).val.app X_1 = f.val.app (Opposite.op (e.inverse.toPrefunctor.obj X_1.unop))
@[simp]
theorem CategoryTheory.Equivalence.sheafCongr.functor_obj_val_map {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type u_2} [CategoryTheory.Category.{u_5, u_2} D] (e : C D) (A : Type u_3) [CategoryTheory.Category.{u_6, u_3} A] (F : CategoryTheory.Sheaf J A) :
∀ {X Y : Dᵒᵖ} (f : X Y), ((CategoryTheory.Equivalence.sheafCongr.functor J e A).toPrefunctor.obj F).val.toPrefunctor.map f = F.val.toPrefunctor.map (e.inverse.toPrefunctor.map f.unop).op

The functor in the equivalence of sheaf categories.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Equivalence.sheafCongr.inverse_obj_val_map {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type u_2} [CategoryTheory.Category.{u_5, u_2} D] (e : C D) (A : Type u_3) [CategoryTheory.Category.{u_6, u_3} A] (F : CategoryTheory.Sheaf (CategoryTheory.LocallyCoverDense.inducedTopology (_ : CategoryTheory.LocallyCoverDense J e.inverse)) A) :
    ∀ {X Y : Cᵒᵖ} (f : X Y), ((CategoryTheory.Equivalence.sheafCongr.inverse J e A).toPrefunctor.obj F).val.toPrefunctor.map f = F.val.toPrefunctor.map (e.functor.toPrefunctor.map f.unop).op

    The inverse in the equivalence of sheaf categories.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      @[simp]

      The equivalence of sheaf categories.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Transport a presheaf to the equivalent category and sheafify there.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Transporting and sheafifying is left adjoint to taking the underlying presheaf.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For