Discrete-underlying adjunction #
Given a well-behaved concrete category C
, we define a functor C ⥤ Condensed C
which associates
to an object of C
the corresponding "discrete" condensed object (see Condensed.discrete
).
In Condensed.discrete_underlying_adj
we prove that this functor is left adjoint to the forgetful
functor from Condensed C
to C
.
@[simp]
theorem
Condensed.discrete_map
(C : Type w)
[CategoryTheory.Category.{u + 1, w} C]
[CategoryTheory.HasWeakSheafify (CategoryTheory.coherentTopology CompHaus) C]
:
∀ {X Y : C} (f : X ⟶ Y),
(Condensed.discrete C).toPrefunctor.map f = (CategoryTheory.presheafToSheaf (CategoryTheory.coherentTopology CompHaus) C).toPrefunctor.map
((CategoryTheory.Functor.const CompHausᵒᵖ).toPrefunctor.map f)
@[simp]
theorem
Condensed.discrete_obj
(C : Type w)
[CategoryTheory.Category.{u + 1, w} C]
[CategoryTheory.HasWeakSheafify (CategoryTheory.coherentTopology CompHaus) C]
(X : C)
:
(Condensed.discrete C).toPrefunctor.obj X = (CategoryTheory.presheafToSheaf (CategoryTheory.coherentTopology CompHaus) C).toPrefunctor.obj
((CategoryTheory.Functor.const CompHausᵒᵖ).toPrefunctor.obj X)
noncomputable def
Condensed.discrete
(C : Type w)
[CategoryTheory.Category.{u + 1, w} C]
[CategoryTheory.HasWeakSheafify (CategoryTheory.coherentTopology CompHaus) C]
:
The discrete condensed object associated to an object of C
is the constant sheaf at that object.
Equations
Instances For
@[simp]
theorem
Condensed.underlying_obj
(C : Type w)
[CategoryTheory.Category.{u + 1, w} C]
(j : CategoryTheory.Sheaf (CategoryTheory.coherentTopology CompHaus) C)
:
(Condensed.underlying C).toPrefunctor.obj j = j.val.toPrefunctor.obj (Opposite.op (⊤_ CompHaus))
@[simp]
theorem
Condensed.underlying_map
(C : Type w)
[CategoryTheory.Category.{u + 1, w} C]
:
∀ {X Y : CategoryTheory.Sheaf (CategoryTheory.coherentTopology CompHaus) C} (f : X ⟶ Y),
(Condensed.underlying C).toPrefunctor.map f = f.val.app (Opposite.op (⊤_ CompHaus))
The underlying object of a condensed object in C
is the condensed object evaluated at a point.
This can be viewed as a sort of forgetful functor from Condensed C
to C
Equations
- Condensed.underlying C = (CategoryTheory.sheafSections (CategoryTheory.coherentTopology CompHaus) C).toPrefunctor.obj (Opposite.op (⊤_ CompHaus))
Instances For
noncomputable def
Condensed.discrete_underlying_adj
(C : Type w)
[CategoryTheory.Category.{u + 1, w} C]
[CategoryTheory.HasWeakSheafify (CategoryTheory.coherentTopology CompHaus) C]
:
Discreteness is left adjoint to the forgetful functor. When C
is Type*
, this is analogous to
TopCat.adj₁ : TopCat.discrete ⊣ forget TopCat
.
Equations
- Condensed.discrete_underlying_adj C = CategoryTheory.constantSheafAdj (CategoryTheory.coherentTopology CompHaus) C CategoryTheory.Limits.terminalIsTerminal