Documentation

Mathlib.Data.Real.ENNReal

Extended non-negative reals #

We define ENNReal = ℝ≥0∞ := WithTop ℝ≥0 to be the type of extended nonnegative real numbers, i.e., the interval [0, +∞]. This type is used as the codomain of a MeasureTheory.Measure, and of the extended distance edist in an EMetricSpace. In this file we define some algebraic operations and a linear order on ℝ≥0∞ and prove basic properties of these operations, order, and conversions to/from , ℝ≥0, and .

Main definitions #

Implementation notes #

We define a CanLift ℝ≥0∞ ℝ≥0 instance, so one of the ways to prove theorems about an ℝ≥0∞ number a is to consider the cases a = ∞ and a ≠ ∞, and use the tactic lift a to ℝ≥0 using ha in the second case. This instance is even more useful if one already has ha : a ≠ ∞ in the context, or if we have (f : α → ℝ≥0∞) (hf : ∀ x, f x ≠ ∞).

Notations #

The extended nonnegative real numbers. This is usually denoted [0, ∞], and is relevant as the codomain of a measure.

Equations
Instances For

    The extended nonnegative real numbers. This is usually denoted [0, ∞], and is relevant as the codomain of a measure.

    Equations
    Instances For

      Notation for infinity as an ENNReal number.

      Equations
      Instances For
        instance ENNReal.covariantClass_mul_le :
        CovariantClass ENNReal ENNReal (fun (x x_1 : ENNReal) => x * x_1) fun (x x_1 : ENNReal) => x x_1
        Equations
        instance ENNReal.covariantClass_add_le :
        CovariantClass ENNReal ENNReal (fun (x x_1 : ENNReal) => x + x_1) fun (x x_1 : ENNReal) => x x_1
        Equations
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        @[match_pattern]

        Coercion from ℝ≥0 to ℝ≥0∞.

        Equations
        Instances For
          def ENNReal.recTopCoe {C : ENNRealSort u_3} (top : C ) (coe : (x : NNReal) → C x) (x : ENNReal) :
          C x

          A version of WithTop.recTopCoe that uses ENNReal.ofNNReal.

          Equations
          Instances For
            @[simp]
            theorem ENNReal.none_eq_top :
            none =
            @[simp]
            theorem ENNReal.some_eq_coe (a : NNReal) :
            some a = a
            @[simp]
            theorem ENNReal.some_eq_coe' (a : NNReal) :
            a = a

            toNNReal x returns x if it is real, otherwise 0.

            Equations
            Instances For

              toReal x returns x if it is real, 0 otherwise.

              Equations
              Instances For
                noncomputable def ENNReal.ofReal (r : ) :

                ofReal x returns x if it is nonnegative, 0 otherwise.

                Equations
                Instances For
                  @[simp]
                  @[simp]
                  theorem ENNReal.coe_toNNReal {a : ENNReal} :
                  a (ENNReal.toNNReal a) = a
                  @[simp]
                  theorem ENNReal.ofReal_eq_coe_nnreal {x : } (h : 0 x) :
                  ENNReal.ofReal x = { val := x, property := h }
                  @[simp]
                  @[simp]
                  theorem ENNReal.coe_zero :
                  0 = 0
                  @[simp]
                  theorem ENNReal.coe_one :
                  1 = 1
                  @[simp]
                  theorem ENNReal.coe_toReal (r : NNReal) :
                  ENNReal.toReal r = r
                  theorem ENNReal.forall_ennreal {p : ENNRealProp} :
                  (∀ (a : ENNReal), p a) (∀ (r : NNReal), p r) p
                  theorem ENNReal.forall_ne_top {p : ENNRealProp} :
                  (∀ (a : ENNReal), a p a) ∀ (r : NNReal), p r
                  theorem ENNReal.exists_ne_top' {p : ENNRealProp} :
                  (∃ (a : ENNReal) (_ : a ), p a) ∃ (r : NNReal), p r
                  theorem ENNReal.exists_ne_top {p : ENNRealProp} :
                  (∃ (a : ENNReal), a p a) ∃ (r : NNReal), p r
                  @[simp]
                  theorem ENNReal.coe_ne_top {r : NNReal} :
                  r
                  @[simp]
                  theorem ENNReal.top_ne_coe {r : NNReal} :
                  r
                  @[simp]
                  theorem ENNReal.coe_lt_top {r : NNReal} :
                  r <
                  @[simp]
                  @[simp]
                  @[simp]
                  @[simp]
                  @[simp]
                  @[simp]
                  theorem ENNReal.coe_eq_coe {r : NNReal} {q : NNReal} :
                  r = q r = q
                  @[simp]
                  theorem ENNReal.coe_le_coe {r : NNReal} {q : NNReal} :
                  r q r q
                  @[simp]
                  theorem ENNReal.coe_lt_coe {r : NNReal} {q : NNReal} :
                  r < q r < q
                  theorem ENNReal.coe_le_coe_of_le {r : NNReal} {q : NNReal} :
                  r qr q

                  Alias of the reverse direction of ENNReal.coe_le_coe.

                  theorem ENNReal.coe_lt_coe_of_le {r : NNReal} {q : NNReal} :
                  r < qr < q

                  Alias of the reverse direction of ENNReal.coe_lt_coe.

                  @[simp]
                  theorem ENNReal.coe_eq_zero {r : NNReal} :
                  r = 0 r = 0
                  @[simp]
                  theorem ENNReal.zero_eq_coe {r : NNReal} :
                  0 = r 0 = r
                  @[simp]
                  theorem ENNReal.coe_eq_one {r : NNReal} :
                  r = 1 r = 1
                  @[simp]
                  theorem ENNReal.one_eq_coe {r : NNReal} :
                  1 = r 1 = r
                  @[simp]
                  theorem ENNReal.coe_pos {r : NNReal} :
                  0 < r 0 < r
                  theorem ENNReal.coe_ne_zero {r : NNReal} :
                  r 0 r 0
                  @[simp]
                  theorem ENNReal.coe_add {r : NNReal} {p : NNReal} :
                  (r + p) = r + p
                  @[simp]
                  theorem ENNReal.coe_mul {r : NNReal} {p : NNReal} :
                  (r * p) = r * p
                  theorem ENNReal.coe_two :
                  2 = 2
                  @[simp]
                  theorem ENNReal.one_lt_two :
                  1 < 2
                  @[simp]
                  @[simp]

                  (1 : ℝ≥0∞) ≤ 1, recorded as a Fact for use with Lp spaces.

                  Equations

                  (1 : ℝ≥0∞) ≤ 2, recorded as a Fact for use with Lp spaces.

                  Equations

                  (1 : ℝ≥0∞) ≤ ∞, recorded as a Fact for use with Lp spaces.

                  Equations

                  The set of numbers in ℝ≥0∞ that are not equal to is equivalent to ℝ≥0.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem ENNReal.cinfi_ne_top {α : Type u_1} [InfSet α] (f : ENNRealα) :
                    ⨅ (x : { x : ENNReal // x }), f x = ⨅ (x : NNReal), f x
                    theorem ENNReal.iInf_ne_top {α : Type u_1} [CompleteLattice α] (f : ENNRealα) :
                    ⨅ (x : ENNReal), ⨅ (_ : x ), f x = ⨅ (x : NNReal), f x
                    theorem ENNReal.csupr_ne_top {α : Type u_1} [SupSet α] (f : ENNRealα) :
                    ⨆ (x : { x : ENNReal // x }), f x = ⨆ (x : NNReal), f x
                    theorem ENNReal.iSup_ne_top {α : Type u_1} [CompleteLattice α] (f : ENNRealα) :
                    ⨆ (x : ENNReal), ⨆ (_ : x ), f x = ⨆ (x : NNReal), f x
                    theorem ENNReal.iInf_ennreal {α : Type u_3} [CompleteLattice α] {f : ENNRealα} :
                    ⨅ (n : ENNReal), f n = (⨅ (n : NNReal), f n) f
                    theorem ENNReal.iSup_ennreal {α : Type u_3} [CompleteLattice α] {f : ENNRealα} :
                    ⨆ (n : ENNReal), f n = (⨆ (n : NNReal), f n) f

                    Coercion ℝ≥0 → ℝ≥0∞ as a RingHom.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      A MulAction over ℝ≥0∞ restricts to a MulAction over ℝ≥0.

                      Equations
                      theorem ENNReal.smul_def {M : Type u_3} [MulAction ENNReal M] (c : NNReal) (x : M) :
                      c x = c x
                      Equations

                      A DistribMulAction over ℝ≥0∞ restricts to a DistribMulAction over ℝ≥0.

                      Equations

                      A Module over ℝ≥0∞ restricts to a Module over ℝ≥0.

                      Equations

                      An Algebra over ℝ≥0∞ restricts to an Algebra over ℝ≥0.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      theorem ENNReal.coe_smul {R : Type u_3} (r : R) (s : NNReal) [SMul R NNReal] [SMul R ENNReal] [IsScalarTower R NNReal NNReal] [IsScalarTower R NNReal ENNReal] :
                      (r s) = r s
                      @[simp]
                      theorem ENNReal.coe_indicator {α : Type u_3} (s : Set α) (f : αNNReal) (a : α) :
                      (Set.indicator s f a) = Set.indicator s (fun (x : α) => (f x)) a
                      @[simp]
                      theorem ENNReal.coe_pow {r : NNReal} (n : ) :
                      (r ^ n) = r ^ n
                      @[simp]
                      theorem ENNReal.add_eq_top {a : ENNReal} {b : ENNReal} :
                      a + b = a = b =
                      @[simp]
                      theorem ENNReal.add_lt_top {a : ENNReal} {b : ENNReal} :
                      a + b < a < b <
                      theorem ENNReal.toNNReal_add {r₁ : ENNReal} {r₂ : ENNReal} (h₁ : r₁ ) (h₂ : r₂ ) :
                      theorem ENNReal.mul_top' {a : ENNReal} :
                      a * = if a = 0 then 0 else
                      @[simp]
                      theorem ENNReal.mul_top {a : ENNReal} (h : a 0) :
                      theorem ENNReal.top_mul' {a : ENNReal} :
                      * a = if a = 0 then 0 else
                      @[simp]
                      theorem ENNReal.top_mul {a : ENNReal} (h : a 0) :
                      theorem ENNReal.smul_top {R : Type u_3} [Zero R] [SMulWithZero R ENNReal] [IsScalarTower R ENNReal ENNReal] [NoZeroSMulDivisors R ENNReal] [DecidableEq R] (c : R) :
                      c = if c = 0 then 0 else
                      theorem ENNReal.top_pow {n : } (h : 0 < n) :
                      theorem ENNReal.mul_eq_top {a : ENNReal} {b : ENNReal} :
                      a * b = a 0 b = a = b 0
                      theorem ENNReal.mul_lt_top {a : ENNReal} {b : ENNReal} :
                      a b a * b <
                      theorem ENNReal.mul_ne_top {a : ENNReal} {b : ENNReal} :
                      a b a * b
                      theorem ENNReal.lt_top_of_mul_ne_top_left {a : ENNReal} {b : ENNReal} (h : a * b ) (hb : b 0) :
                      a <
                      theorem ENNReal.lt_top_of_mul_ne_top_right {a : ENNReal} {b : ENNReal} (h : a * b ) (ha : a 0) :
                      b <
                      theorem ENNReal.mul_lt_top_iff {a : ENNReal} {b : ENNReal} :
                      a * b < a < b < a = 0 b = 0
                      theorem ENNReal.mul_pos_iff {a : ENNReal} {b : ENNReal} :
                      0 < a * b 0 < a 0 < b
                      theorem ENNReal.mul_pos {a : ENNReal} {b : ENNReal} (ha : a 0) (hb : b 0) :
                      0 < a * b
                      @[simp]
                      theorem ENNReal.pow_eq_top_iff {a : ENNReal} {n : } :
                      a ^ n = a = n 0
                      theorem ENNReal.pow_eq_top {a : ENNReal} (n : ) (h : a ^ n = ) :
                      a =
                      theorem ENNReal.pow_ne_top {a : ENNReal} (h : a ) {n : } :
                      a ^ n
                      theorem ENNReal.pow_lt_top {a : ENNReal} :
                      a < ∀ (n : ), a ^ n <
                      @[simp]
                      theorem ENNReal.coe_finset_sum {α : Type u_1} {s : Finset α} {f : αNNReal} :
                      (Finset.sum s fun (a : α) => f a) = Finset.sum s fun (a : α) => (f a)
                      @[simp]
                      theorem ENNReal.coe_finset_prod {α : Type u_1} {s : Finset α} {f : αNNReal} :
                      (Finset.prod s fun (a : α) => f a) = Finset.prod s fun (a : α) => (f a)
                      @[simp]
                      theorem ENNReal.one_le_coe_iff {r : NNReal} :
                      1 r 1 r
                      @[simp]
                      theorem ENNReal.coe_le_one_iff {r : NNReal} :
                      r 1 r 1
                      @[simp]
                      theorem ENNReal.coe_lt_one_iff {p : NNReal} :
                      p < 1 p < 1
                      @[simp]
                      theorem ENNReal.one_lt_coe_iff {p : NNReal} :
                      1 < p 1 < p
                      @[simp]
                      theorem ENNReal.coe_nat (n : ) :
                      n = n
                      @[simp]
                      theorem ENNReal.ofReal_coe_nat (n : ) :
                      ENNReal.ofReal n = n
                      @[simp]
                      theorem ENNReal.nat_ne_top (n : ) :
                      n
                      @[simp]
                      theorem ENNReal.top_ne_nat (n : ) :
                      n
                      @[simp]
                      @[simp]
                      theorem ENNReal.toNNReal_nat (n : ) :
                      @[simp]
                      theorem ENNReal.toReal_nat (n : ) :
                      ENNReal.toReal n = n
                      theorem ENNReal.le_coe_iff {a : ENNReal} {r : NNReal} :
                      a r ∃ (p : NNReal), a = p p r
                      theorem ENNReal.coe_le_iff {a : ENNReal} {r : NNReal} :
                      r a ∀ (p : NNReal), a = pr p
                      theorem ENNReal.lt_iff_exists_coe {a : ENNReal} {b : ENNReal} :
                      a < b ∃ (p : NNReal), a = p p < b
                      @[simp]
                      theorem ENNReal.coe_finset_sup {α : Type u_1} {s : Finset α} {f : αNNReal} :
                      (Finset.sup s f) = Finset.sup s fun (x : α) => (f x)
                      @[simp]
                      theorem ENNReal.max_eq_zero_iff {a : ENNReal} {b : ENNReal} :
                      max a b = 0 a = 0 b = 0
                      @[simp]
                      theorem ENNReal.sup_eq_max {a : ENNReal} {b : ENNReal} :
                      a b = max a b
                      theorem ENNReal.pow_pos {a : ENNReal} :
                      0 < a∀ (n : ), 0 < a ^ n
                      theorem ENNReal.pow_ne_zero {a : ENNReal} :
                      a 0∀ (n : ), a ^ n 0
                      theorem ENNReal.le_of_add_le_add_left {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a a + b a + cb c
                      theorem ENNReal.le_of_add_le_add_right {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a b + a c + ab c
                      theorem ENNReal.add_lt_add_left {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a b < ca + b < a + c
                      theorem ENNReal.add_lt_add_right {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a b < cb + a < c + a
                      theorem ENNReal.add_le_add_iff_left {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a (a + b a + c b c)
                      theorem ENNReal.add_le_add_iff_right {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a (b + a c + a b c)
                      theorem ENNReal.add_lt_add_iff_left {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a (a + b < a + c b < c)
                      theorem ENNReal.add_lt_add_iff_right {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a (b + a < c + a b < c)
                      theorem ENNReal.add_lt_add_of_le_of_lt {a : ENNReal} {b : ENNReal} {c : ENNReal} {d : ENNReal} :
                      a a bc < da + c < b + d
                      theorem ENNReal.add_lt_add_of_lt_of_le {a : ENNReal} {b : ENNReal} {c : ENNReal} {d : ENNReal} :
                      c a < bc da + c < b + d
                      instance ENNReal.contravariantClass_add_lt :
                      ContravariantClass ENNReal ENNReal (fun (x x_1 : ENNReal) => x + x_1) fun (x x_1 : ENNReal) => x < x_1
                      Equations
                      theorem ENNReal.lt_add_right {a : ENNReal} {b : ENNReal} (ha : a ) (hb : b 0) :
                      a < a + b
                      theorem ENNReal.lt_iff_exists_rat_btwn {a : ENNReal} {b : ENNReal} :
                      a < b ∃ (q : ), 0 q a < (Real.toNNReal q) (Real.toNNReal q) < b
                      theorem ENNReal.lt_iff_exists_nnreal_btwn {a : ENNReal} {b : ENNReal} :
                      a < b ∃ (r : NNReal), a < r r < b
                      theorem ENNReal.lt_iff_exists_add_pos_lt {a : ENNReal} {b : ENNReal} :
                      a < b ∃ (r : NNReal), 0 < r a + r < b
                      theorem ENNReal.le_of_forall_pos_le_add {a : ENNReal} {b : ENNReal} (h : ∀ (ε : NNReal), 0 < εb < a b + ε) :
                      a b
                      theorem ENNReal.coe_nat_lt_coe {r : NNReal} {n : } :
                      n < r n < r
                      theorem ENNReal.coe_lt_coe_nat {r : NNReal} {n : } :
                      r < n r < n
                      theorem ENNReal.exists_nat_gt {r : ENNReal} (h : r ) :
                      ∃ (n : ), r < n
                      @[simp]
                      theorem ENNReal.iUnion_Iio_coe_nat :
                      ⋃ (n : ), Set.Iio n = {}
                      @[simp]
                      theorem ENNReal.iUnion_Iic_coe_nat :
                      ⋃ (n : ), Set.Iic n = {}
                      @[simp]
                      theorem ENNReal.iUnion_Ioc_coe_nat {a : ENNReal} :
                      ⋃ (n : ), Set.Ioc a n = Set.Ioi a \ {}
                      @[simp]
                      theorem ENNReal.iUnion_Ioo_coe_nat {a : ENNReal} :
                      ⋃ (n : ), Set.Ioo a n = Set.Ioi a \ {}
                      @[simp]
                      theorem ENNReal.iUnion_Icc_coe_nat {a : ENNReal} :
                      ⋃ (n : ), Set.Icc a n = Set.Ici a \ {}
                      @[simp]
                      theorem ENNReal.iUnion_Ico_coe_nat {a : ENNReal} :
                      ⋃ (n : ), Set.Ico a n = Set.Ici a \ {}
                      @[simp]
                      theorem ENNReal.iInter_Ici_coe_nat :
                      ⋂ (n : ), Set.Ici n = {}
                      @[simp]
                      theorem ENNReal.iInter_Ioi_coe_nat :
                      ⋂ (n : ), Set.Ioi n = {}
                      theorem ENNReal.add_lt_add {a : ENNReal} {b : ENNReal} {c : ENNReal} {d : ENNReal} (ac : a < c) (bd : b < d) :
                      a + b < c + d
                      @[simp]
                      theorem ENNReal.coe_min (r : NNReal) (p : NNReal) :
                      (min r p) = min r p
                      @[simp]
                      theorem ENNReal.coe_max (r : NNReal) (p : NNReal) :
                      (max r p) = max r p
                      theorem ENNReal.le_of_top_imp_top_of_toNNReal_le {a : ENNReal} {b : ENNReal} (h : a = b = ) (h_nnreal : a b ENNReal.toNNReal a ENNReal.toNNReal b) :
                      a b
                      theorem ENNReal.coe_sSup {s : Set NNReal} :
                      BddAbove s(sSup s) = ⨆ a ∈ s, a
                      theorem ENNReal.coe_sInf {s : Set NNReal} :
                      Set.Nonempty s(sInf s) = ⨅ a ∈ s, a
                      theorem ENNReal.coe_iSup {ι : Sort u_4} {f : ιNNReal} (hf : BddAbove (Set.range f)) :
                      (iSup f) = ⨆ (a : ι), (f a)
                      theorem ENNReal.coe_iInf {ι : Sort u_4} [Nonempty ι] (f : ιNNReal) :
                      (iInf f) = ⨅ (a : ι), (f a)
                      theorem ENNReal.iSup_coe_eq_top {ι : Sort u_3} {f : ιNNReal} :
                      ⨆ (i : ι), (f i) = ¬BddAbove (Set.range f)
                      theorem ENNReal.iSup_coe_lt_top {ι : Sort u_3} {f : ιNNReal} :
                      ⨆ (i : ι), (f i) < BddAbove (Set.range f)
                      theorem ENNReal.iInf_coe_eq_top {ι : Sort u_3} {f : ιNNReal} :
                      ⨅ (i : ι), (f i) = IsEmpty ι
                      theorem ENNReal.iInf_coe_lt_top {ι : Sort u_3} {f : ιNNReal} :
                      ⨅ (i : ι), (f i) < Nonempty ι
                      theorem ENNReal.mul_lt_mul {a : ENNReal} {b : ENNReal} {c : ENNReal} {d : ENNReal} (ac : a < c) (bd : b < d) :
                      a * b < c * d
                      theorem ENNReal.mul_left_mono {a : ENNReal} :
                      Monotone fun (x : ENNReal) => a * x
                      theorem ENNReal.mul_right_mono {a : ENNReal} :
                      Monotone fun (x : ENNReal) => x * a
                      theorem ENNReal.pow_strictMono {n : } :
                      n 0StrictMono fun (x : ENNReal) => x ^ n
                      theorem ENNReal.pow_lt_pow_of_lt_left {a : ENNReal} {b : ENNReal} (h : a < b) {n : } (hn : n 0) :
                      a ^ n < b ^ n
                      theorem ENNReal.max_mul {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      max a b * c = max (a * c) (b * c)
                      theorem ENNReal.mul_max {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a * max b c = max (a * b) (a * c)
                      theorem ENNReal.mul_left_strictMono {a : ENNReal} (h0 : a 0) (hinf : a ) :
                      StrictMono fun (x : ENNReal) => a * x
                      theorem ENNReal.mul_lt_mul_left' {a : ENNReal} {b : ENNReal} {c : ENNReal} (h0 : a 0) (hinf : a ) (bc : b < c) :
                      a * b < a * c
                      theorem ENNReal.mul_lt_mul_right' {a : ENNReal} {b : ENNReal} {c : ENNReal} (h0 : a 0) (hinf : a ) (bc : b < c) :
                      b * a < c * a
                      theorem ENNReal.mul_eq_mul_left {a : ENNReal} {b : ENNReal} {c : ENNReal} (h0 : a 0) (hinf : a ) :
                      a * b = a * c b = c
                      theorem ENNReal.mul_eq_mul_right {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      c 0c (a * c = b * c a = b)
                      theorem ENNReal.mul_le_mul_left {a : ENNReal} {b : ENNReal} {c : ENNReal} (h0 : a 0) (hinf : a ) :
                      a * b a * c b c
                      theorem ENNReal.mul_le_mul_right {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      c 0c (a * c b * c a b)
                      theorem ENNReal.mul_lt_mul_left {a : ENNReal} {b : ENNReal} {c : ENNReal} (h0 : a 0) (hinf : a ) :
                      a * b < a * c b < c
                      theorem ENNReal.mul_lt_mul_right {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      c 0c (a * c < b * c a < b)

                      An element a is AddLECancellable if a + b ≤ a + c implies b ≤ c for all b and c. This is true in ℝ≥0∞ for all elements except .

                      This lemma has an abbreviated name because it is used frequently.

                      This lemma has an abbreviated name because it is used frequently.

                      theorem ENNReal.cancel_of_lt' {a : ENNReal} {b : ENNReal} (h : a < b) :

                      This lemma has an abbreviated name because it is used frequently.

                      This lemma has an abbreviated name because it is used frequently.

                      theorem ENNReal.add_right_inj {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a ) :
                      a + b = a + c b = c
                      theorem ENNReal.add_left_inj {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a ) :
                      b + a = c + a b = c
                      theorem ENNReal.sub_eq_sInf {a : ENNReal} {b : ENNReal} :
                      a - b = sInf {d : ENNReal | a d + b}
                      @[simp]
                      theorem ENNReal.coe_sub {r : NNReal} {p : NNReal} :
                      (r - p) = r - p

                      This is a special case of WithTop.coe_sub in the ENNReal namespace

                      @[simp]
                      theorem ENNReal.top_sub_coe {r : NNReal} :
                      - r =

                      This is a special case of WithTop.top_sub_coe in the ENNReal namespace

                      theorem ENNReal.sub_top {a : ENNReal} :
                      a - = 0

                      This is a special case of WithTop.sub_top in the ENNReal namespace

                      @[simp]
                      theorem ENNReal.sub_eq_top_iff {a : ENNReal} {b : ENNReal} :
                      a - b = a = b
                      theorem ENNReal.sub_ne_top {a : ENNReal} {b : ENNReal} (ha : a ) :
                      a - b
                      @[simp]
                      theorem ENNReal.nat_cast_sub (m : ) (n : ) :
                      (m - n) = m - n
                      theorem ENNReal.sub_eq_of_eq_add {a : ENNReal} {b : ENNReal} {c : ENNReal} (hb : b ) :
                      a = c + ba - b = c
                      theorem ENNReal.eq_sub_of_add_eq {a : ENNReal} {b : ENNReal} {c : ENNReal} (hc : c ) :
                      a + c = ba = b - c
                      theorem ENNReal.sub_eq_of_eq_add_rev {a : ENNReal} {b : ENNReal} {c : ENNReal} (hb : b ) :
                      a = b + ca - b = c
                      theorem ENNReal.sub_eq_of_add_eq {a : ENNReal} {b : ENNReal} {c : ENNReal} (hb : b ) (hc : a + b = c) :
                      c - b = a
                      @[simp]
                      theorem ENNReal.add_sub_cancel_left {a : ENNReal} {b : ENNReal} (ha : a ) :
                      a + b - a = b
                      @[simp]
                      theorem ENNReal.add_sub_cancel_right {a : ENNReal} {b : ENNReal} (hb : b ) :
                      a + b - b = a
                      theorem ENNReal.lt_add_of_sub_lt_left {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a b ) :
                      a - b < ca < b + c
                      theorem ENNReal.lt_add_of_sub_lt_right {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a c ) :
                      a - c < ba < b + c
                      theorem ENNReal.le_sub_of_add_le_left {a : ENNReal} {b : ENNReal} {c : ENNReal} (ha : a ) :
                      a + b cb c - a
                      theorem ENNReal.le_sub_of_add_le_right {a : ENNReal} {b : ENNReal} {c : ENNReal} (hb : b ) :
                      a + b ca c - b
                      theorem ENNReal.sub_lt_of_lt_add {a : ENNReal} {b : ENNReal} {c : ENNReal} (hac : c a) (h : a < b + c) :
                      a - c < b
                      theorem ENNReal.sub_lt_iff_lt_right {a : ENNReal} {b : ENNReal} {c : ENNReal} (hb : b ) (hab : b a) :
                      a - b < c a < c + b
                      theorem ENNReal.sub_lt_self {a : ENNReal} {b : ENNReal} (ha : a ) (ha₀ : a 0) (hb : b 0) :
                      a - b < a
                      theorem ENNReal.sub_lt_self_iff {a : ENNReal} {b : ENNReal} (ha : a ) :
                      a - b < a 0 < a 0 < b
                      theorem ENNReal.sub_lt_of_sub_lt {a : ENNReal} {b : ENNReal} {c : ENNReal} (h₂ : c a) (h₃ : a b ) (h₁ : a - b < c) :
                      a - c < b
                      theorem ENNReal.sub_sub_cancel {a : ENNReal} {b : ENNReal} (h : a ) (h2 : b a) :
                      a - (a - b) = b
                      theorem ENNReal.sub_right_inj {a : ENNReal} {b : ENNReal} {c : ENNReal} (ha : a ) (hb : b a) (hc : c a) :
                      a - b = a - c b = c
                      theorem ENNReal.sub_mul {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : 0 < bb < ac ) :
                      (a - b) * c = a * c - b * c
                      theorem ENNReal.mul_sub {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : 0 < cc < ba ) :
                      a * (b - c) = a * b - a * c
                      theorem ENNReal.prod_lt_top {α : Type u_1} {s : Finset α} {f : αENNReal} (h : as, f a ) :
                      (Finset.prod s fun (a : α) => f a) <

                      A product of finite numbers is still finite

                      theorem ENNReal.sum_lt_top {α : Type u_1} {s : Finset α} {f : αENNReal} (h : as, f a ) :
                      (Finset.sum s fun (a : α) => f a) <

                      A sum of finite numbers is still finite

                      theorem ENNReal.sum_lt_top_iff {α : Type u_1} {s : Finset α} {f : αENNReal} :
                      (Finset.sum s fun (a : α) => f a) < as, f a <

                      A sum of finite numbers is still finite

                      theorem ENNReal.sum_eq_top_iff {α : Type u_1} {s : Finset α} {f : αENNReal} :
                      (Finset.sum s fun (x : α) => f x) = ∃ a ∈ s, f a =

                      A sum of numbers is infinite iff one of them is infinite

                      theorem ENNReal.lt_top_of_sum_ne_top {α : Type u_1} {s : Finset α} {f : αENNReal} (h : (Finset.sum s fun (x : α) => f x) ) {a : α} (ha : a s) :
                      f a <
                      theorem ENNReal.toNNReal_sum {α : Type u_1} {s : Finset α} {f : αENNReal} (hf : as, f a ) :
                      ENNReal.toNNReal (Finset.sum s fun (a : α) => f a) = Finset.sum s fun (a : α) => ENNReal.toNNReal (f a)

                      Seeing ℝ≥0∞ as ℝ≥0 does not change their sum, unless one of the ℝ≥0∞ is infinity

                      theorem ENNReal.toReal_sum {α : Type u_1} {s : Finset α} {f : αENNReal} (hf : as, f a ) :
                      ENNReal.toReal (Finset.sum s fun (a : α) => f a) = Finset.sum s fun (a : α) => ENNReal.toReal (f a)

                      seeing ℝ≥0∞ as Real does not change their sum, unless one of the ℝ≥0∞ is infinity

                      theorem ENNReal.ofReal_sum_of_nonneg {α : Type u_1} {s : Finset α} {f : α} (hf : is, 0 f i) :
                      ENNReal.ofReal (Finset.sum s fun (i : α) => f i) = Finset.sum s fun (i : α) => ENNReal.ofReal (f i)
                      theorem ENNReal.sum_lt_sum_of_nonempty {α : Type u_1} {s : Finset α} (hs : Finset.Nonempty s) {f : αENNReal} {g : αENNReal} (Hlt : is, f i < g i) :
                      (Finset.sum s fun (i : α) => f i) < Finset.sum s fun (i : α) => g i
                      theorem ENNReal.exists_le_of_sum_le {α : Type u_1} {s : Finset α} (hs : Finset.Nonempty s) {f : αENNReal} {g : αENNReal} (Hle : (Finset.sum s fun (i : α) => f i) Finset.sum s fun (i : α) => g i) :
                      ∃ i ∈ s, f i g i
                      theorem ENNReal.mem_Iio_self_add {x : ENNReal} {ε : ENNReal} :
                      x ε 0x Set.Iio (x + ε)
                      theorem ENNReal.mem_Ioo_self_sub_add {x : ENNReal} {ε₁ : ENNReal} {ε₂ : ENNReal} :
                      x x 0ε₁ 0ε₂ 0x Set.Ioo (x - ε₁) (x + ε₂)
                      Equations
                      theorem ENNReal.div_eq_inv_mul {a : ENNReal} {b : ENNReal} :
                      a / b = b⁻¹ * a
                      @[simp]
                      @[simp]
                      theorem ENNReal.coe_inv_le {r : NNReal} :
                      r⁻¹ (r)⁻¹
                      @[simp]
                      theorem ENNReal.coe_inv {r : NNReal} (hr : r 0) :
                      r⁻¹ = (r)⁻¹
                      @[simp]
                      theorem ENNReal.coe_div {r : NNReal} {p : NNReal} (hr : r 0) :
                      (p / r) = p / r
                      theorem ENNReal.div_zero {a : ENNReal} (h : a 0) :
                      a / 0 =
                      theorem ENNReal.inv_pow {a : ENNReal} {n : } :
                      (a ^ n)⁻¹ = a⁻¹ ^ n
                      theorem ENNReal.mul_inv_cancel {a : ENNReal} (h0 : a 0) (ht : a ) :
                      a * a⁻¹ = 1
                      theorem ENNReal.inv_mul_cancel {a : ENNReal} (h0 : a 0) (ht : a ) :
                      a⁻¹ * a = 1
                      theorem ENNReal.div_mul_cancel {a : ENNReal} {b : ENNReal} (h0 : a 0) (hI : a ) :
                      b / a * a = b
                      theorem ENNReal.mul_div_cancel' {a : ENNReal} {b : ENNReal} (h0 : a 0) (hI : a ) :
                      a * (b / a) = b
                      theorem ENNReal.mul_comm_div {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a / b * c = a * (c / b)
                      theorem ENNReal.mul_div_right_comm {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                      a * b / c = a / c * b
                      @[simp]
                      theorem ENNReal.inv_eq_top {a : ENNReal} :
                      a⁻¹ = a = 0
                      @[simp]
                      theorem ENNReal.inv_lt_top {x : ENNReal} :
                      x⁻¹ < 0 < x
                      theorem ENNReal.div_lt_top {x : ENNReal} {y : ENNReal} (h1 : x ) (h2 : y 0) :
                      x / y <
                      @[simp]
                      theorem ENNReal.inv_eq_zero {a : ENNReal} :
                      a⁻¹ = 0 a =
                      theorem ENNReal.div_pos {a : ENNReal} {b : ENNReal} (ha : a 0) (hb : b ) :
                      0 < a / b
                      theorem ENNReal.mul_inv {a : ENNReal} {b : ENNReal} (ha : a 0 b ) (hb : a b 0) :
                      (a * b)⁻¹ = a⁻¹ * b⁻¹
                      theorem ENNReal.mul_div_mul_left {c : ENNReal} (a : ENNReal) (b : ENNReal) (hc : c 0) (hc' : c ) :
                      c * a / (c * b) = a / b
                      theorem ENNReal.mul_div_mul_right {c : ENNReal} (a : ENNReal) (b : ENNReal) (hc : c 0) (hc' : c ) :
                      a * c / (b * c) = a / b
                      theorem ENNReal.sub_div {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : 0 < bb < ac 0) :
                      (a - b) / c = a / c - b / c
                      @[simp]
                      theorem ENNReal.inv_pos {a : ENNReal} :
                      @[simp]
                      theorem ENNReal.inv_lt_inv {a : ENNReal} {b : ENNReal} :
                      a⁻¹ < b⁻¹ b < a
                      @[simp]
                      theorem ENNReal.inv_le_inv {a : ENNReal} {b : ENNReal} :
                      theorem ENNReal.inv_le_inv' {a : ENNReal} {b : ENNReal} (h : a b) :
                      theorem ENNReal.inv_lt_inv' {a : ENNReal} {b : ENNReal} (h : a < b) :
                      @[simp]
                      theorem ENNReal.inv_le_one {a : ENNReal} :
                      a⁻¹ 1 1 a
                      @[simp]
                      theorem ENNReal.inv_lt_one {a : ENNReal} :
                      a⁻¹ < 1 1 < a
                      @[simp]
                      theorem ENNReal.one_lt_inv {a : ENNReal} :
                      1 < a⁻¹ a < 1
                      @[simp]
                      theorem OrderIso.invENNReal_apply :
                      ∀ (a : ENNReal), OrderIso.invENNReal a = (OrderDual.toDual a)⁻¹

                      The inverse map fun x ↦ x⁻¹ is an order isomorphism between ℝ≥0∞ and its OrderDual

                      Equations
                      Instances For
                        @[simp]
                        theorem ENNReal.div_top {a : ENNReal} :
                        a / = 0
                        theorem ENNReal.top_div {a : ENNReal} :
                        / a = if a = then 0 else
                        @[simp]
                        theorem ENNReal.top_div_coe {p : NNReal} :
                        / p =
                        @[simp]
                        theorem ENNReal.zero_div {a : ENNReal} :
                        0 / a = 0
                        theorem ENNReal.div_eq_top {a : ENNReal} {b : ENNReal} :
                        a / b = a 0 b = 0 a = b
                        theorem ENNReal.le_div_iff_mul_le {a : ENNReal} {b : ENNReal} {c : ENNReal} (h0 : b 0 c 0) (ht : b c ) :
                        a c / b a * b c
                        theorem ENNReal.div_le_iff_le_mul {a : ENNReal} {b : ENNReal} {c : ENNReal} (hb0 : b 0 c ) (hbt : b c 0) :
                        a / b c a c * b
                        theorem ENNReal.lt_div_iff_mul_lt {a : ENNReal} {b : ENNReal} {c : ENNReal} (hb0 : b 0 c ) (hbt : b c 0) :
                        c < a / b c * b < a
                        theorem ENNReal.div_le_of_le_mul {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a b * c) :
                        a / c b
                        theorem ENNReal.div_le_of_le_mul' {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a b * c) :
                        a / b c
                        theorem ENNReal.mul_le_of_le_div {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a b / c) :
                        a * c b
                        theorem ENNReal.mul_le_of_le_div' {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a b / c) :
                        c * a b
                        theorem ENNReal.div_lt_iff {a : ENNReal} {b : ENNReal} {c : ENNReal} (h0 : b 0 c 0) (ht : b c ) :
                        c / b < a c < a * b
                        theorem ENNReal.mul_lt_of_lt_div {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a < b / c) :
                        a * c < b
                        theorem ENNReal.mul_lt_of_lt_div' {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a < b / c) :
                        c * a < b
                        theorem ENNReal.div_lt_of_lt_mul {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a < b * c) :
                        a / c < b
                        theorem ENNReal.div_lt_of_lt_mul' {a : ENNReal} {b : ENNReal} {c : ENNReal} (h : a < b * c) :
                        a / b < c
                        theorem ENNReal.inv_le_iff_le_mul {a : ENNReal} {b : ENNReal} (h₁ : b = a 0) (h₂ : a = b 0) :
                        a⁻¹ b 1 a * b
                        @[simp]
                        theorem ENNReal.le_inv_iff_mul_le {a : ENNReal} {b : ENNReal} :
                        a b⁻¹ a * b 1
                        theorem ENNReal.div_le_div {a : ENNReal} {b : ENNReal} {c : ENNReal} {d : ENNReal} (hab : a b) (hdc : d c) :
                        a / c b / d
                        theorem ENNReal.div_le_div_left {a : ENNReal} {b : ENNReal} (h : a b) (c : ENNReal) :
                        c / b c / a
                        theorem ENNReal.div_le_div_right {a : ENNReal} {b : ENNReal} (h : a b) (c : ENNReal) :
                        a / c b / c
                        theorem ENNReal.eq_inv_of_mul_eq_one_left {a : ENNReal} {b : ENNReal} (h : a * b = 1) :
                        a = b⁻¹
                        theorem ENNReal.mul_le_iff_le_inv {a : ENNReal} {b : ENNReal} {r : ENNReal} (hr₀ : r 0) (hr₁ : r ) :
                        r * a b a r⁻¹ * b
                        theorem ENNReal.le_inv_smul_iff {a : ENNReal} {b : ENNReal} {r : NNReal} (hr₀ : r 0) :
                        a r⁻¹ b r a b

                        A variant of le_inv_smul_iff that holds for ENNReal.

                        theorem ENNReal.inv_smul_le_iff {a : ENNReal} {b : ENNReal} {r : NNReal} (hr₀ : r 0) :
                        r⁻¹ a b a r b

                        A variant of inv_smul_le_iff that holds for ENNReal.

                        theorem ENNReal.le_of_forall_nnreal_lt {x : ENNReal} {y : ENNReal} (h : ∀ (r : NNReal), r < xr y) :
                        x y
                        theorem ENNReal.le_of_forall_pos_nnreal_lt {x : ENNReal} {y : ENNReal} (h : ∀ (r : NNReal), 0 < rr < xr y) :
                        x y
                        theorem ENNReal.eq_top_of_forall_nnreal_le {x : ENNReal} (h : ∀ (r : NNReal), r x) :
                        x =
                        theorem ENNReal.add_div {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                        (a + b) / c = a / c + b / c
                        theorem ENNReal.div_add_div_same {a : ENNReal} {b : ENNReal} {c : ENNReal} :
                        a / c + b / c = (a + b) / c
                        theorem ENNReal.div_self {a : ENNReal} (h0 : a 0) (hI : a ) :
                        a / a = 1
                        theorem ENNReal.mul_div_le {a : ENNReal} {b : ENNReal} :
                        a * (b / a) b
                        theorem ENNReal.eq_div_iff {a : ENNReal} {b : ENNReal} {c : ENNReal} (ha : a 0) (ha' : a ) :
                        b = c / a a * b = c
                        theorem ENNReal.div_eq_div_iff {a : ENNReal} {b : ENNReal} {c : ENNReal} {d : ENNReal} (ha : a 0) (ha' : a ) (hb : b 0) (hb' : b ) :
                        c / b = d / a a * c = b * d
                        theorem ENNReal.div_eq_one_iff {a : ENNReal} {b : ENNReal} (hb₀ : b 0) (hb₁ : b ) :
                        a / b = 1 a = b
                        @[simp]
                        theorem ENNReal.add_halves (a : ENNReal) :
                        a / 2 + a / 2 = a
                        @[simp]
                        theorem ENNReal.add_thirds (a : ENNReal) :
                        a / 3 + a / 3 + a / 3 = a
                        @[simp]
                        theorem ENNReal.div_eq_zero_iff {a : ENNReal} {b : ENNReal} :
                        a / b = 0 a = 0 b =
                        @[simp]
                        theorem ENNReal.div_pos_iff {a : ENNReal} {b : ENNReal} :
                        0 < a / b a 0 b
                        theorem ENNReal.half_pos {a : ENNReal} (h : a 0) :
                        0 < a / 2
                        theorem ENNReal.half_lt_self {a : ENNReal} (hz : a 0) (ht : a ) :
                        a / 2 < a
                        theorem ENNReal.sub_half {a : ENNReal} (h : a ) :
                        a - a / 2 = a / 2

                        The birational order isomorphism between ℝ≥0∞ and the unit interval Set.Iic (1 : ℝ≥0∞).

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem ENNReal.orderIsoIicCoe_apply_coe (a : NNReal) :
                          ∀ (a_1 : (Set.Iic a)), ((ENNReal.orderIsoIicCoe a) a_1) = ENNReal.toNNReal a_1
                          def ENNReal.orderIsoIicCoe (a : NNReal) :
                          (Set.Iic a) ≃o (Set.Iic a)

                          Order isomorphism between an initial interval in ℝ≥0∞ and an initial interval in ℝ≥0.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem ENNReal.exists_inv_nat_lt {a : ENNReal} (h : a 0) :
                            ∃ (n : ), (n)⁻¹ < a
                            theorem ENNReal.exists_nat_pos_mul_gt {a : ENNReal} {b : ENNReal} (ha : a 0) (hb : b ) :
                            ∃ n > 0, b < n * a
                            theorem ENNReal.exists_nat_mul_gt {a : ENNReal} {b : ENNReal} (ha : a 0) (hb : b ) :
                            ∃ (n : ), b < n * a
                            theorem ENNReal.exists_nat_pos_inv_mul_lt {a : ENNReal} {b : ENNReal} (ha : a ) (hb : b 0) :
                            ∃ n > 0, (n)⁻¹ * a < b
                            theorem ENNReal.exists_nnreal_pos_mul_lt {a : ENNReal} {b : ENNReal} (ha : a ) (hb : b 0) :
                            ∃ n > 0, n * a < b
                            theorem ENNReal.exists_inv_two_pow_lt {a : ENNReal} (ha : a 0) :
                            ∃ (n : ), 2⁻¹ ^ n < a
                            @[simp]
                            theorem ENNReal.coe_zpow {r : NNReal} (hr : r 0) (n : ) :
                            (r ^ n) = r ^ n
                            theorem ENNReal.zpow_pos {a : ENNReal} (ha : a 0) (h'a : a ) (n : ) :
                            0 < a ^ n
                            theorem ENNReal.zpow_lt_top {a : ENNReal} (ha : a 0) (h'a : a ) (n : ) :
                            a ^ n <
                            theorem ENNReal.exists_mem_Ico_zpow {x : ENNReal} {y : ENNReal} (hx : x 0) (h'x : x ) (hy : 1 < y) (h'y : y ) :
                            ∃ (n : ), x Set.Ico (y ^ n) (y ^ (n + 1))
                            theorem ENNReal.exists_mem_Ioc_zpow {x : ENNReal} {y : ENNReal} (hx : x 0) (h'x : x ) (hy : 1 < y) (h'y : y ) :
                            ∃ (n : ), x Set.Ioc (y ^ n) (y ^ (n + 1))
                            theorem ENNReal.Ioo_zero_top_eq_iUnion_Ico_zpow {y : ENNReal} (hy : 1 < y) (h'y : y ) :
                            Set.Ioo 0 = ⋃ (n : ), Set.Ico (y ^ n) (y ^ (n + 1))
                            theorem ENNReal.zpow_le_of_le {x : ENNReal} (hx : 1 x) {a : } {b : } (h : a b) :
                            x ^ a x ^ b
                            theorem ENNReal.monotone_zpow {x : ENNReal} (hx : 1 x) :
                            Monotone fun (x_1 : ) => x ^ x_1
                            theorem ENNReal.zpow_add {x : ENNReal} (hx : x 0) (h'x : x ) (m : ) (n : ) :
                            x ^ (m + n) = x ^ m * x ^ n
                            theorem ENNReal.ofReal_add {p : } {q : } (hp : 0 p) (hq : 0 q) :
                            @[simp]
                            theorem ENNReal.toReal_le_toReal {a : ENNReal} {b : ENNReal} (ha : a ) (hb : b ) :
                            theorem ENNReal.toReal_mono' {a : ENNReal} {b : ENNReal} (h : a b) (ht : b = a = ) :
                            @[simp]
                            theorem ENNReal.toReal_lt_toReal {a : ENNReal} {b : ENNReal} (ha : a ) (hb : b ) :
                            theorem ENNReal.toReal_le_add' {a : ENNReal} {b : ENNReal} {c : ENNReal} (hle : a b + c) (hb : b = a = ) (hc : c = a = ) :

                            If a ≤ b + c and a = ∞ whenever b = ∞ or c = ∞, then ENNReal.toReal a ≤ ENNReal.toReal b + ENNReal.toReal c. This lemma is useful to transfer triangle-like inequalities from ENNReals to Reals.

                            theorem ENNReal.toReal_le_add {a : ENNReal} {b : ENNReal} {c : ENNReal} (hle : a b + c) (hb : b ) (hc : c ) :

                            If a ≤ b + c, b ≠ ∞, and c ≠ ∞, then ENNReal.toReal a ≤ ENNReal.toReal b + ENNReal.toReal c. This lemma is useful to transfer triangle-like inequalities from ENNReals to Reals.

                            @[simp]
                            theorem ENNReal.toNNReal_pos {a : ENNReal} (ha₀ : a 0) (ha_top : a ) :
                            theorem ENNReal.toReal_pos {a : ENNReal} (ha₀ : a 0) (ha_top : a ) :
                            @[simp]
                            @[simp]
                            theorem ENNReal.ofReal_eq_ofReal_iff {p : } {q : } (hp : 0 p) (hq : 0 q) :
                            @[simp]
                            theorem ENNReal.ofReal_lt_ofReal_iff {p : } {q : } (h : 0 < q) :
                            @[simp]
                            theorem ENNReal.ofReal_pos {p : } :
                            @[simp]
                            @[simp]
                            theorem ENNReal.ofReal_of_nonpos {p : } :
                            p 0ENNReal.ofReal p = 0

                            Alias of the reverse direction of ENNReal.ofReal_eq_zero.

                            @[simp]
                            theorem ENNReal.ofReal_lt_nat_cast {p : } {n : } (hn : n 0) :
                            ENNReal.ofReal p < n p < n
                            @[simp]
                            @[simp]
                            theorem ENNReal.nat_cast_le_ofReal {n : } {p : } (hn : n 0) :
                            n ENNReal.ofReal p n p
                            @[simp]
                            @[simp]
                            theorem ENNReal.ofReal_le_nat_cast {r : } {n : } :
                            ENNReal.ofReal r n r n
                            @[simp]
                            @[simp]
                            theorem ENNReal.nat_cast_lt_ofReal {n : } {r : } :
                            n < ENNReal.ofReal r n < r
                            @[simp]
                            @[simp]
                            theorem ENNReal.ofReal_eq_nat_cast {r : } {n : } (h : n 0) :
                            ENNReal.ofReal r = n r = n
                            @[simp]
                            theorem ENNReal.ofReal_lt_coe_iff {a : } {b : NNReal} (ha : 0 a) :
                            ENNReal.ofReal a < b a < b
                            theorem ENNReal.ofReal_pow {p : } (hp : 0 p) (n : ) :

                            ENNReal.toNNReal as a MonoidHom.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem ENNReal.toNNReal_prod {ι : Type u_3} {s : Finset ι} {f : ιENNReal} :
                              ENNReal.toNNReal (Finset.prod s fun (i : ι) => f i) = Finset.prod s fun (i : ι) => ENNReal.toNNReal (f i)
                              @[simp]
                              @[simp]
                              theorem ENNReal.toReal_prod {ι : Type u_3} {s : Finset ι} {f : ιENNReal} :
                              ENNReal.toReal (Finset.prod s fun (i : ι) => f i) = Finset.prod s fun (i : ι) => ENNReal.toReal (f i)
                              theorem ENNReal.ofReal_prod_of_nonneg {α : Type u_1} {s : Finset α} {f : α} (hf : is, 0 f i) :
                              ENNReal.ofReal (Finset.prod s fun (i : α) => f i) = Finset.prod s fun (i : α) => ENNReal.ofReal (f i)
                              theorem ENNReal.toNNReal_iInf {ι : Sort u_3} {f : ιENNReal} (hf : ∀ (i : ι), f i ) :
                              ENNReal.toNNReal (iInf f) = ⨅ (i : ι), ENNReal.toNNReal (f i)
                              theorem ENNReal.toNNReal_iSup {ι : Sort u_3} {f : ιENNReal} (hf : ∀ (i : ι), f i ) :
                              ENNReal.toNNReal (iSup f) = ⨆ (i : ι), ENNReal.toNNReal (f i)
                              theorem ENNReal.toReal_iInf {ι : Sort u_3} {f : ιENNReal} (hf : ∀ (i : ι), f i ) :
                              ENNReal.toReal (iInf f) = ⨅ (i : ι), ENNReal.toReal (f i)
                              theorem ENNReal.toReal_sInf (s : Set ENNReal) (hf : rs, r ) :
                              theorem ENNReal.toReal_iSup {ι : Sort u_3} {f : ιENNReal} (hf : ∀ (i : ι), f i ) :
                              ENNReal.toReal (iSup f) = ⨆ (i : ι), ENNReal.toReal (f i)
                              theorem ENNReal.toReal_sSup (s : Set ENNReal) (hf : rs, r ) :
                              theorem ENNReal.iInf_add {a : ENNReal} {ι : Sort u_3} {f : ιENNReal} :
                              iInf f + a = ⨅ (i : ι), f i + a
                              theorem ENNReal.iSup_sub {a : ENNReal} {ι : Sort u_3} {f : ιENNReal} :
                              (⨆ (i : ι), f i) - a = ⨆ (i : ι), f i - a
                              theorem ENNReal.sub_iInf {a : ENNReal} {ι : Sort u_3} {f : ιENNReal} :
                              a - ⨅ (i : ι), f i = ⨆ (i : ι), a - f i
                              theorem ENNReal.sInf_add {a : ENNReal} {s : Set ENNReal} :
                              sInf s + a = ⨅ b ∈ s, b + a
                              theorem ENNReal.add_iInf {ι : Sort u_3} {f : ιENNReal} {a : ENNReal} :
                              a + iInf f = ⨅ (b : ι), a + f b
                              theorem ENNReal.iInf_add_iInf {ι : Sort u_3} {f : ιENNReal} {g : ιENNReal} (h : ∀ (i j : ι), ∃ (k : ι), f k + g k f i + g j) :
                              iInf f + iInf g = ⨅ (a : ι), f a + g a
                              theorem ENNReal.iInf_sum {α : Type u_1} {ι : Sort u_3} {f : ιαENNReal} {s : Finset α} [Nonempty ι] (h : ∀ (t : Finset α) (i j : ι), ∃ (k : ι), at, f k a f i a f k a f j a) :
                              (⨅ (i : ι), Finset.sum s fun (a : α) => f i a) = Finset.sum s fun (a : α) => ⨅ (i : ι), f i a
                              theorem ENNReal.iInf_mul_of_ne {ι : Sort u_4} {f : ιENNReal} {x : ENNReal} (h0 : x 0) (h : x ) :
                              iInf f * x = ⨅ (i : ι), f i * x

                              If x ≠ 0 and x ≠ ∞, then right multiplication by x maps infimum to infimum. See also ENNReal.iInf_mul that assumes [Nonempty ι] but does not require x ≠ 0.

                              theorem ENNReal.iInf_mul {ι : Sort u_4} [Nonempty ι] {f : ιENNReal} {x : ENNReal} (h : x ) :
                              iInf f * x = ⨅ (i : ι), f i * x

                              If x ≠ ∞, then right multiplication by x maps infimum over a nonempty type to infimum. See also ENNReal.iInf_mul_of_ne that assumes x ≠ 0 but does not require [Nonempty ι].

                              theorem ENNReal.mul_iInf {ι : Sort u_4} [Nonempty ι] {f : ιENNReal} {x : ENNReal} (h : x ) :
                              x * iInf f = ⨅ (i : ι), x * f i

                              If x ≠ ∞, then left multiplication by x maps infimum over a nonempty type to infimum. See also ENNReal.mul_iInf_of_ne that assumes x ≠ 0 but does not require [Nonempty ι].

                              theorem ENNReal.mul_iInf_of_ne {ι : Sort u_4} {f : ιENNReal} {x : ENNReal} (h0 : x 0) (h : x ) :
                              x * iInf f = ⨅ (i : ι), x * f i

                              If x ≠ 0 and x ≠ ∞, then left multiplication by x maps infimum to infimum. See also ENNReal.mul_iInf that assumes [Nonempty ι] but does not require x ≠ 0.

                              supr_mul, mul_supr and variants are in Topology.Instances.ENNReal.

                              @[simp]
                              theorem ENNReal.iSup_eq_zero {ι : Sort u_3} {f : ιENNReal} :
                              ⨆ (i : ι), f i = 0 ∀ (i : ι), f i = 0
                              @[simp]
                              theorem ENNReal.iSup_zero_eq_zero {ι : Sort u_3} :
                              ⨆ (x : ι), 0 = 0
                              theorem ENNReal.sup_eq_zero {a : ENNReal} {b : ENNReal} :
                              a b = 0 a = 0 b = 0
                              theorem ENNReal.iSup_coe_nat :
                              ⨆ (n : ), n =

                              Extension for the positivity tactic: ENNReal.toReal.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                Extension for the positivity tactic: ENNReal.toReal.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For

                                  Extension for the positivity tactic: ENNReal.ofNNReal.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For