Documentation

Mathlib.LinearAlgebra.Coevaluation

The coevaluation map on finite dimensional vector spaces #

Given a finite dimensional vector space V over a field K this describes the canonical linear map from K to V ⊗ Dual K V which corresponds to the identity function on V.

Tags #

coevaluation, dual module, tensor product

Future work #

def coevaluation (K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] :

The coevaluation map is a linear map from a field K to a finite dimensional vector space V.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem coevaluation_apply_one (K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] :
    (coevaluation K V) 1 = let bV := Basis.ofVectorSpace K V; Finset.sum Finset.univ fun (i : (Basis.ofVectorSpaceIndex K V)) => bV i ⊗ₜ[K] Basis.coord bV i

    This lemma corresponds to one of the coherence laws for duals in rigid categories, see CategoryTheory.Monoidal.Rigid.

    This lemma corresponds to one of the coherence laws for duals in rigid categories, see CategoryTheory.Monoidal.Rigid.