Real quadratic forms #
Sylvester's law of inertia equivalent_one_neg_one_weighted_sum_squared
:
A real quadratic form is equivalent to a weighted
sum of squares with the weights being ±1 or 0.
When the real quadratic form is nondegenerate we can take the weights to be ±1,
as in equivalent_one_zero_neg_one_weighted_sum_squared
.
noncomputable def
QuadraticForm.isometryEquivSignWeightedSumSquares
{ι : Type u_1}
[Fintype ι]
[DecidableEq ι]
(w : ι → ℝ)
:
The isometry between a weighted sum of squares with weights u
on the
(non-zero) real numbers and the weighted sum of squares with weights sign ∘ u
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
QuadraticForm.equivalent_one_neg_one_weighted_sum_squared
{M : Type u_2}
[AddCommGroup M]
[Module ℝ M]
[FiniteDimensional ℝ M]
(Q : QuadraticForm ℝ M)
(hQ : BilinForm.Nondegenerate (QuadraticForm.associated Q))
:
∃ (w : Fin (FiniteDimensional.finrank ℝ M) → ℝ),
(∀ (i : Fin (FiniteDimensional.finrank ℝ M)), w i = -1 ∨ w i = 1) ∧ QuadraticForm.Equivalent Q (QuadraticForm.weightedSumSquares ℝ w)
Sylvester's law of inertia: A nondegenerate real quadratic form is equivalent to a weighted sum of squares with the weights being ±1.
theorem
QuadraticForm.equivalent_one_zero_neg_one_weighted_sum_squared
{M : Type u_2}
[AddCommGroup M]
[Module ℝ M]
[FiniteDimensional ℝ M]
(Q : QuadraticForm ℝ M)
:
∃ (w : Fin (FiniteDimensional.finrank ℝ M) → ℝ),
(∀ (i : Fin (FiniteDimensional.finrank ℝ M)), w i = -1 ∨ w i = 0 ∨ w i = 1) ∧ QuadraticForm.Equivalent Q (QuadraticForm.weightedSumSquares ℝ w)
Sylvester's law of inertia: A real quadratic form is equivalent to a weighted sum of squares with the weights being ±1 or 0.