Documentation

Mathlib.LinearAlgebra.QuadraticForm.TensorProduct

The quadratic form on a tensor product #

Main definitions #

noncomputable def QuadraticForm.tensorDistrib (R : Type uR) (A : Type uA) {M₁ : Type uM₁} {M₂ : Type uM₂} [CommRing R] [CommRing A] [AddCommGroup M₁] [AddCommGroup M₂] [Algebra R A] [Module R M₁] [Module A M₁] [SMulCommClass R A M₁] [IsScalarTower R A M₁] [Module R M₂] [Invertible 2] :

The tensor product of two quadratic forms injects into quadratic forms on tensor products.

Note this is heterobasic; the quadratic form on the left can take values in a larger ring than the one on the right.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem QuadraticForm.tensorDistrib_tmul {R : Type uR} {A : Type uA} {M₁ : Type uM₁} {M₂ : Type uM₂} [CommRing R] [CommRing A] [AddCommGroup M₁] [AddCommGroup M₂] [Algebra R A] [Module R M₁] [Module A M₁] [SMulCommClass R A M₁] [IsScalarTower R A M₁] [Module R M₂] [Invertible 2] (Q₁ : QuadraticForm A M₁) (Q₂ : QuadraticForm R M₂) (m₁ : M₁) (m₂ : M₂) :
    ((QuadraticForm.tensorDistrib R A) (Q₁ ⊗ₜ[R] Q₂)) (m₁ ⊗ₜ[R] m₂) = Q₂ m₂ Q₁ m₁
    @[inline, reducible]
    noncomputable abbrev QuadraticForm.tmul {R : Type uR} {A : Type uA} {M₁ : Type uM₁} {M₂ : Type uM₂} [CommRing R] [CommRing A] [AddCommGroup M₁] [AddCommGroup M₂] [Algebra R A] [Module R M₁] [Module A M₁] [SMulCommClass R A M₁] [IsScalarTower R A M₁] [Module R M₂] [Invertible 2] (Q₁ : QuadraticForm A M₁) (Q₂ : QuadraticForm R M₂) :

    The tensor product of two quadratic forms, a shorthand for dot notation.

    Equations
    Instances For
      theorem QuadraticForm.associated_tmul {R : Type uR} {A : Type uA} {M₁ : Type uM₁} {M₂ : Type uM₂} [CommRing R] [CommRing A] [AddCommGroup M₁] [AddCommGroup M₂] [Algebra R A] [Module R M₁] [Module A M₁] [SMulCommClass R A M₁] [IsScalarTower R A M₁] [Module R M₂] [Invertible 2] [Invertible 2] (Q₁ : QuadraticForm A M₁) (Q₂ : QuadraticForm R M₂) :
      QuadraticForm.associated (QuadraticForm.tmul Q₁ Q₂) = BilinForm.tmul (QuadraticForm.associated Q₁) (QuadraticForm.associated Q₂)
      theorem QuadraticForm.polarBilin_tmul {R : Type uR} {A : Type uA} {M₁ : Type uM₁} {M₂ : Type uM₂} [CommRing R] [CommRing A] [AddCommGroup M₁] [AddCommGroup M₂] [Algebra R A] [Module R M₁] [Module A M₁] [SMulCommClass R A M₁] [IsScalarTower R A M₁] [Module R M₂] [Invertible 2] [Invertible 2] (Q₁ : QuadraticForm A M₁) (Q₂ : QuadraticForm R M₂) :
      noncomputable def QuadraticForm.baseChange {R : Type uR} (A : Type uA) {M₂ : Type uM₂} [CommRing R] [CommRing A] [AddCommGroup M₂] [Algebra R A] [Module R M₂] [Invertible 2] (Q : QuadraticForm R M₂) :

      The base change of a quadratic form.

      Equations
      Instances For
        @[simp]
        theorem QuadraticForm.baseChange_tmul {R : Type uR} {A : Type uA} {M₂ : Type uM₂} [CommRing R] [CommRing A] [AddCommGroup M₂] [Algebra R A] [Module R M₂] [Invertible 2] (Q : QuadraticForm R M₂) (a : A) (m₂ : M₂) :
        (QuadraticForm.baseChange A Q) (a ⊗ₜ[R] m₂) = Q m₂ (a * a)
        theorem QuadraticForm.associated_baseChange {R : Type uR} {A : Type uA} {M₂ : Type uM₂} [CommRing R] [CommRing A] [AddCommGroup M₂] [Algebra R A] [Module R M₂] [Invertible 2] [Invertible 2] (Q : QuadraticForm R M₂) :
        QuadraticForm.associated (QuadraticForm.baseChange A Q) = BilinForm.baseChange A (QuadraticForm.associated Q)