instance
instModuleShrinkInstAddCommMonoidShrink
{α : Type u_1}
{β : Type u_2}
[Semiring α]
[AddCommMonoid β]
[Module α β]
[Small.{u_3, u_2} β]
:
Module α (Shrink.{u_3, u_2} β)
Equations
- instModuleShrinkInstAddCommMonoidShrink = Equiv.module α (equivShrink β).symm
def
linearEquivShrink
(α : Type u_1)
(β : Type u_2)
[Semiring α]
[AddCommMonoid β]
[Module α β]
[Small.{u_3, u_2} β]
:
β ≃ₗ[α] Shrink.{u_3, u_2} β
A small module is linearly equivalent to its small model.
Equations
- linearEquivShrink α β = LinearEquiv.symm (Equiv.linearEquiv α (equivShrink β).symm)
Instances For
instance
instAlgebraShrinkInstSemiringShrink
{α : Type u_1}
{β : Type u_2}
[CommSemiring α]
[Semiring β]
[Algebra α β]
[Small.{u_3, u_2} β]
:
Algebra α (Shrink.{u_3, u_2} β)
Equations
- instAlgebraShrinkInstSemiringShrink = Equiv.algebra α (equivShrink β).symm
def
algEquivShrink
(α : Type u_1)
(β : Type u_2)
[CommSemiring α]
[Semiring β]
[Algebra α β]
[Small.{u_3, u_2} β]
:
β ≃ₐ[α] Shrink.{u_3, u_2} β
A small algebra is algebra equivalent to its small model.
Equations
- algEquivShrink α β = AlgEquiv.symm (Equiv.algEquiv α (equivShrink β).symm)