Documentation

Mathlib.MeasureTheory.Decomposition.SignedLebesgue

Lebesgue decomposition #

This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures μ and ν, there exists a σ-finite measure ξ and a measurable function f such that μ = ξ + fν and ξ is mutually singular with respect to ν.

Main definitions #

Main results #

Tags #

Lebesgue decomposition theorem

Given a signed measure s and a measure μ, s.singularPart μ is the signed measure such that s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s and s.singularPart μ is mutually singular with respect to μ.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The Radon-Nikodym derivative between a signed measure and a positive measure.

    rnDeriv s μ satisfies μ.withDensityᵥ (s.rnDeriv μ) = s if and only if s is absolutely continuous with respect to μ and this fact is known as MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq and can be found in MeasureTheory.Decomposition.RadonNikodym.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The Lebesgue Decomposition theorem between a signed measure and a measure: Given a signed measure s and a σ-finite measure μ, there exist a signed measure t and a measurable and integrable function f, such that t is mutually singular with respect to μ and s = t + μ.withDensityᵥ f. In this case t = s.singularPart μ and f = s.rnDeriv μ.

      Given a measure μ, signed measures s and t, and a function f such that t is mutually singular with respect to μ and s = t + μ.withDensityᵥ f, we have t = singularPart s μ, i.e. t is the singular part of the Lebesgue decomposition between s and μ.

      Given a measure μ, signed measures s and t, and a function f such that t is mutually singular with respect to μ and s = t + μ.withDensityᵥ f, we have f = rnDeriv s μ, i.e. f is the Radon-Nikodym derivative of s and μ.

      A complex measure is said to HaveLebesgueDecomposition with respect to a positive measure if both its real and imaginary part HaveLebesgueDecomposition with respect to that measure.

      Instances

        The singular part between a complex measure c and a positive measure μ is the complex measure satisfying c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c. This property is given by MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The Radon-Nikodym derivative between a complex measure and a positive measure.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For