Documentation

Mathlib.MeasureTheory.Function.LpSeminorm

ℒp space #

This file describes properties of almost everywhere strongly measurable functions with finite p-seminorm, denoted by snorm f p μ and defined for p:ℝ≥0∞ as 0 if p=0, (∫ ‖f a‖^p ∂μ) ^ (1/p) for 0 < p < ∞ and essSup ‖f‖ μ for p=∞.

The Prop-valued Memℒp f p μ states that a function f : α → E has finite p-seminorm and is almost everywhere strongly measurable.

Main definitions #

ℒp seminorm #

We define the ℒp seminorm, denoted by snorm f p μ. For real p, it is given by an integral formula (for which we use the notation snorm' f p μ), and for p = ∞ it is the essential supremum (for which we use the notation snormEssSup f μ).

We also define a predicate Memℒp f p μ, requesting that a function is almost everywhere measurable and has finite snorm f p μ.

This paragraph is devoted to the basic properties of these definitions. It is constructed as follows: for a given property, we prove it for snorm' and snormEssSup when it makes sense, deduce it for snorm, and translate it in terms of Memℒp.

def MeasureTheory.snorm' {α : Type u_1} {F : Type u_3} [NormedAddCommGroup F] :
{x : MeasurableSpace α} → (αF)MeasureTheory.Measure αENNReal

(∫ ‖f a‖^q ∂μ) ^ (1/q), which is a seminorm on the space of measurable functions for which this quantity is finite

Equations
Instances For
    def MeasureTheory.snormEssSup {α : Type u_1} {F : Type u_3} [NormedAddCommGroup F] :
    {x : MeasurableSpace α} → (αF)MeasureTheory.Measure αENNReal

    seminorm for ℒ∞, equal to the essential supremum of ‖f‖.

    Equations
    Instances For
      def MeasureTheory.snorm {α : Type u_1} {F : Type u_3} [NormedAddCommGroup F] :
      {x : MeasurableSpace α} → (αF)ENNRealMeasureTheory.Measure αENNReal

      ℒp seminorm, equal to 0 for p=0, to (∫ ‖f a‖^p ∂μ) ^ (1/p) for 0 < p < ∞ and to essSup ‖f‖ μ for p = ∞.

      Equations
      Instances For
        theorem MeasureTheory.snorm_eq_snorm' {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} :
        theorem MeasureTheory.snorm_eq_lintegral_rpow_nnnorm {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} :
        MeasureTheory.snorm f p μ = (∫⁻ (x : α), f x‖₊ ^ ENNReal.toReal pμ) ^ (1 / ENNReal.toReal p)
        theorem MeasureTheory.snorm_one_eq_lintegral_nnnorm {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
        MeasureTheory.snorm f 1 μ = ∫⁻ (x : α), f x‖₊μ
        def MeasureTheory.Memℒp {E : Type u_2} [NormedAddCommGroup E] {α : Type u_5} :
        {x : MeasurableSpace α} → (αE)ENNRealautoParam (MeasureTheory.Measure α) _auto✝Prop

        The property that f:α→E is ae strongly measurable and (∫ ‖f a‖^p ∂μ)^(1/p) is finite if p < ∞, or essSup f < ∞ if p = ∞.

        Equations
        Instances For
          theorem MeasureTheory.lintegral_rpow_nnnorm_eq_rpow_snorm' {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) :
          ∫⁻ (a : α), f a‖₊ ^ qμ = MeasureTheory.snorm' f q μ ^ q
          theorem MeasureTheory.Memℒp.snorm_lt_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hfp : MeasureTheory.Memℒp f p) :
          theorem MeasureTheory.Memℒp.snorm_ne_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hfp : MeasureTheory.Memℒp f p) :
          theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_snorm'_lt_top {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) (hfq : MeasureTheory.snorm' f q μ < ) :
          ∫⁻ (a : α), f a‖₊ ^ qμ <
          theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_snorm_lt_top {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hp_ne_zero : p 0) (hp_ne_top : p ) (hfp : MeasureTheory.snorm f p μ < ) :
          ∫⁻ (a : α), f a‖₊ ^ ENNReal.toReal pμ <
          theorem MeasureTheory.snorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hp_ne_zero : p 0) (hp_ne_top : p ) :
          MeasureTheory.snorm f p μ < ∫⁻ (a : α), f a‖₊ ^ ENNReal.toReal pμ <
          @[simp]
          theorem MeasureTheory.snorm'_exponent_zero {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          @[simp]
          theorem MeasureTheory.snorm_exponent_zero {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          @[simp]
          theorem MeasureTheory.snorm'_zero {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp0_lt : 0 < q) :
          @[simp]
          theorem MeasureTheory.snorm'_zero' {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hq0_ne : q 0) (hμ : μ 0) :
          @[simp]
          theorem MeasureTheory.snorm_zero {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] :
          @[simp]
          theorem MeasureTheory.snorm_zero' {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] :
          MeasureTheory.snorm (fun (x : α) => 0) p μ = 0
          theorem MeasureTheory.zero_mem_ℒp' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
          MeasureTheory.Memℒp (fun (x : α) => 0) p
          theorem MeasureTheory.snorm'_measure_zero_of_pos {α : Type u_1} {F : Type u_3} {q : } [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} (hq_pos : 0 < q) :
          theorem MeasureTheory.snorm'_measure_zero_of_neg {α : Type u_1} {F : Type u_3} {q : } [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} (hq_neg : q < 0) :
          @[simp]
          @[simp]
          theorem MeasureTheory.snorm_measure_zero {α : Type u_1} {F : Type u_3} {p : ENNReal} [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} :
          @[simp]
          theorem MeasureTheory.snorm'_neg {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          @[simp]
          theorem MeasureTheory.snorm_neg {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          theorem MeasureTheory.Memℒp.neg {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.Memℒp f p) :
          theorem MeasureTheory.snorm'_const {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hq_pos : 0 < q) :
          MeasureTheory.snorm' (fun (x : α) => c) q μ = c‖₊ * μ Set.univ ^ (1 / q)
          theorem MeasureTheory.snorm'_const' {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [MeasureTheory.IsFiniteMeasure μ] (c : F) (hc_ne_zero : c 0) (hq_ne_zero : q 0) :
          MeasureTheory.snorm' (fun (x : α) => c) q μ = c‖₊ * μ Set.univ ^ (1 / q)
          theorem MeasureTheory.snormEssSup_const {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hμ : μ 0) :
          MeasureTheory.snormEssSup (fun (x : α) => c) μ = c‖₊
          theorem MeasureTheory.snorm'_const_of_isProbabilityMeasure {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hq_pos : 0 < q) [MeasureTheory.IsProbabilityMeasure μ] :
          MeasureTheory.snorm' (fun (x : α) => c) q μ = c‖₊
          theorem MeasureTheory.snorm_const {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (h0 : p 0) (hμ : μ 0) :
          MeasureTheory.snorm (fun (x : α) => c) p μ = c‖₊ * μ Set.univ ^ (1 / ENNReal.toReal p)
          theorem MeasureTheory.snorm_const' {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (h0 : p 0) (h_top : p ) :
          MeasureTheory.snorm (fun (x : α) => c) p μ = c‖₊ * μ Set.univ ^ (1 / ENNReal.toReal p)
          theorem MeasureTheory.snorm_const_lt_top_iff {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} {c : F} (hp_ne_zero : p 0) (hp_ne_top : p ) :
          MeasureTheory.snorm (fun (x : α) => c) p μ < c = 0 μ Set.univ <
          theorem MeasureTheory.memℒp_const {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (c : E) [MeasureTheory.IsFiniteMeasure μ] :
          MeasureTheory.Memℒp (fun (x : α) => c) p
          theorem MeasureTheory.memℒp_top_const {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (c : E) :
          MeasureTheory.Memℒp (fun (x : α) => c)
          theorem MeasureTheory.memℒp_const_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {p : ENNReal} {c : E} (hp_ne_zero : p 0) (hp_ne_top : p ) :
          MeasureTheory.Memℒp (fun (x : α) => c) p c = 0 μ Set.univ <
          theorem MeasureTheory.snorm'_mono_nnnorm_ae {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :
          theorem MeasureTheory.snorm'_mono_ae {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) ∂μ, f x g x) :
          theorem MeasureTheory.snorm'_congr_nnnorm_ae {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : αF} (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ = g x‖₊) :
          theorem MeasureTheory.snorm'_congr_norm_ae {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : αF} (hfg : ∀ᵐ (x : α) ∂μ, f x = g x) :
          theorem MeasureTheory.snorm'_congr_ae {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : αF} (hfg : f =ᶠ[MeasureTheory.Measure.ae μ] g) :
          theorem MeasureTheory.snormEssSup_mono_nnnorm_ae {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : αF} (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :
          theorem MeasureTheory.snorm_mono_nnnorm_ae {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :
          theorem MeasureTheory.snorm_mono_ae {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) ∂μ, f x g x) :
          theorem MeasureTheory.snorm_mono_ae_real {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ᵐ (x : α) ∂μ, f x g x) :
          theorem MeasureTheory.snorm_mono_nnnorm {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x‖₊ g x‖₊) :
          theorem MeasureTheory.snorm_mono {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x g x) :
          theorem MeasureTheory.snorm_mono_real {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ (x : α), f x g x) :
          theorem MeasureTheory.snormEssSup_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
          theorem MeasureTheory.snormEssSup_le_of_ae_bound {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
          theorem MeasureTheory.snormEssSup_lt_top_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
          theorem MeasureTheory.snormEssSup_lt_top_of_ae_bound {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
          theorem MeasureTheory.snorm_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
          MeasureTheory.snorm f p μ C μ Set.univ ^ (ENNReal.toReal p)⁻¹
          theorem MeasureTheory.snorm_le_of_ae_bound {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
          theorem MeasureTheory.snorm_congr_nnnorm_ae {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ = g x‖₊) :
          theorem MeasureTheory.snorm_congr_norm_ae {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) ∂μ, f x = g x) :
          theorem MeasureTheory.snorm_indicator_sub_indicator {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (s : Set α) (t : Set α) (f : αE) :
          @[simp]
          theorem MeasureTheory.snorm'_norm {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          MeasureTheory.snorm' (fun (a : α) => f a) q μ = MeasureTheory.snorm' f q μ
          @[simp]
          theorem MeasureTheory.snorm_norm {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) :
          MeasureTheory.snorm (fun (x : α) => f x) p μ = MeasureTheory.snorm f p μ
          theorem MeasureTheory.snorm'_norm_rpow {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (p : ) (q : ) (hq_pos : 0 < q) :
          MeasureTheory.snorm' (fun (x : α) => f x ^ q) p μ = MeasureTheory.snorm' f (p * q) μ ^ q
          theorem MeasureTheory.snorm_norm_rpow {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hq_pos : 0 < q) :
          MeasureTheory.snorm (fun (x : α) => f x ^ q) p μ = MeasureTheory.snorm f (p * ENNReal.ofReal q) μ ^ q
          theorem MeasureTheory.snorm_congr_ae {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : αF} (hfg : f =ᶠ[MeasureTheory.Measure.ae μ] g) :
          theorem MeasureTheory.memℒp_congr_ae {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hfg : f =ᶠ[MeasureTheory.Measure.ae μ] g) :
          theorem MeasureTheory.Memℒp.ae_eq {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hfg : f =ᶠ[MeasureTheory.Measure.ae μ] g) (hf_Lp : MeasureTheory.Memℒp f p) :
          theorem MeasureTheory.Memℒp.of_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MeasureTheory.Memℒp g p) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) ∂μ, f x g x) :
          theorem MeasureTheory.Memℒp.mono {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MeasureTheory.Memℒp g p) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) ∂μ, f x g x) :

          Alias of MeasureTheory.Memℒp.of_le.

          theorem MeasureTheory.Memℒp.mono' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : α} (hg : MeasureTheory.Memℒp g p) (hf : MeasureTheory.AEStronglyMeasurable f μ) (h : ∀ᵐ (a : α) ∂μ, f a g a) :
          theorem MeasureTheory.Memℒp.congr_norm {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : MeasureTheory.Memℒp f p) (hg : MeasureTheory.AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) ∂μ, f a = g a) :
          theorem MeasureTheory.memℒp_congr_norm {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) ∂μ, f a = g a) :
          theorem MeasureTheory.memℒp_top_of_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
          theorem MeasureTheory.Memℒp.of_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
          theorem MeasureTheory.snorm'_mono_measure {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν μ) (hq : 0 q) :
          theorem MeasureTheory.snorm_mono_measure {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν μ) :
          theorem MeasureTheory.Memℒp.mono_measure {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hμν : ν μ) (hf : MeasureTheory.Memℒp f p) :
          theorem MeasureTheory.Memℒp.restrict {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (s : Set α) {f : αE} (hf : MeasureTheory.Memℒp f p) :
          theorem MeasureTheory.snorm'_smul_measure {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : } (hp : 0 p) {f : αF} (c : ENNReal) :
          MeasureTheory.snorm' f p (c μ) = c ^ (1 / p) * MeasureTheory.snorm' f p μ
          theorem MeasureTheory.snorm_smul_measure_of_ne_zero {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} {f : αF} {c : ENNReal} (hc : c 0) :
          theorem MeasureTheory.snorm_smul_measure_of_ne_top {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} (hp_ne_top : p ) {f : αF} (c : ENNReal) :
          theorem MeasureTheory.snorm_one_smul_measure {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (c : ENNReal) :
          theorem MeasureTheory.Memℒp.of_measure_le_smul {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {μ' : MeasureTheory.Measure α} (c : ENNReal) (hc : c ) (hμ'_le : μ' c μ) {f : αE} (hf : MeasureTheory.Memℒp f p) :
          theorem MeasureTheory.Memℒp.smul_measure {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {c : ENNReal} (hf : MeasureTheory.Memℒp f p) (hc : c ) :
          theorem MeasureTheory.Memℒp.norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (h : MeasureTheory.Memℒp f p) :
          MeasureTheory.Memℒp (fun (x : α) => f x) p
          theorem MeasureTheory.snorm'_eq_zero_of_ae_zero {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) (hf_zero : f =ᶠ[MeasureTheory.Measure.ae μ] 0) :
          theorem MeasureTheory.snorm'_eq_zero_of_ae_zero' {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hq0_ne : q 0) (hμ : μ 0) {f : αF} (hf_zero : f =ᶠ[MeasureTheory.Measure.ae μ] 0) :
          theorem MeasureTheory.snorm'_eq_zero_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (hq0_lt : 0 < q) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) :
          theorem MeasureTheory.coe_nnnorm_ae_le_snormEssSup {α : Type u_1} {F : Type u_3} [NormedAddCommGroup F] :
          ∀ {x : MeasurableSpace α} (f : αF) (μ : MeasureTheory.Measure α), ∀ᵐ (x_1 : α) ∂μ, f x_1‖₊ MeasureTheory.snormEssSup f μ
          theorem MeasureTheory.snorm'_add_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (hq1 : 1 q) :
          theorem MeasureTheory.snorm'_add_le_of_le_one {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hq0 : 0 q) (hq1 : q 1) :
          MeasureTheory.snorm' (f + g) q μ 2 ^ (1 / q - 1) * (MeasureTheory.snorm' f q μ + MeasureTheory.snorm' g q μ)
          theorem MeasureTheory.snorm_add_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (hp1 : 1 p) :

          A constant for the inequality ‖f + g‖_{L^p} ≤ C * (‖f‖_{L^p} + ‖g‖_{L^p}). It is equal to 1 for p ≥ 1 or p = 0, and 2^(1/p-1) in the more tricky interval (0, 1).

          Equations
          Instances For
            theorem MeasureTheory.exists_Lp_half {α : Type u_1} (E : Type u_2) {m0 : MeasurableSpace α} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] (p : ENNReal) {δ : ENNReal} (hδ : δ 0) :
            ∃ (η : ENNReal), 0 < η ∀ (f g : αE), MeasureTheory.AEStronglyMeasurable f μMeasureTheory.AEStronglyMeasurable g μMeasureTheory.snorm f p μ ηMeasureTheory.snorm g p μ ηMeasureTheory.snorm (f + g) p μ < δ

            Technical lemma to control the addition of functions in L^p even for p < 1: Given δ > 0, there exists η such that two functions bounded by η in L^p have a sum bounded by δ. One could take η = δ / 2 for p ≥ 1, but the point of the lemma is that it works also for p < 1.

            theorem MeasureTheory.snorm_sub_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (hp : 1 p) :
            theorem MeasureTheory.snorm_add_lt_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.Memℒp f p) (hg : MeasureTheory.Memℒp g p) :
            theorem MeasureTheory.ae_le_snormEssSup {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            ∀ᵐ (y : α) ∂μ, f y‖₊ MeasureTheory.snormEssSup f μ
            theorem MeasureTheory.meas_snormEssSup_lt {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            μ {y : α | MeasureTheory.snormEssSup f μ < f y‖₊} = 0
            theorem MeasureTheory.snorm_map_measure {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} {mβ : MeasurableSpace β} {f : αβ} {g : βE} (hg : MeasureTheory.AEStronglyMeasurable g (MeasureTheory.Measure.map f μ)) (hf : AEMeasurable f) :
            theorem MeasureTheory.Memℒp.comp_of_map {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} {mβ : MeasurableSpace β} {f : αβ} {g : βE} (hg : MeasureTheory.Memℒp g p) (hf : AEMeasurable f) :
            theorem MeasureTheory.snorm_comp_measurePreserving {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} {mβ : MeasurableSpace β} {f : αβ} {g : βE} {ν : MeasureTheory.Measure β} (hg : MeasureTheory.AEStronglyMeasurable g ν) (hf : MeasureTheory.MeasurePreserving f) :
            theorem MeasureTheory.Memℒp.comp_measurePreserving {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} {mβ : MeasurableSpace β} {f : αβ} {g : βE} {ν : MeasureTheory.Measure β} (hg : MeasureTheory.Memℒp g p) (hf : MeasureTheory.MeasurePreserving f) :
            theorem MeasurableEmbedding.snorm_map_measure {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_5} {mβ : MeasurableSpace β} {f : αβ} {g : βF} (hf : MeasurableEmbedding f) :
            theorem MeasurableEmbedding.memℒp_map_measure_iff {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_5} {mβ : MeasurableSpace β} {f : αβ} {g : βF} (hf : MeasurableEmbedding f) :
            theorem MeasurableEquiv.memℒp_map_measure_iff {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_5} {mβ : MeasurableSpace β} (f : α ≃ᵐ β) {g : βF} :
            theorem MeasureTheory.essSup_trim {α : Type u_1} {m : MeasurableSpace α} {m0 : MeasurableSpace α} {ν : MeasureTheory.Measure α} (hm : m m0) {f : αENNReal} (hf : Measurable f) :
            theorem MeasureTheory.memℒp_of_memℒp_trim {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {m0 : MeasurableSpace α} {p : ENNReal} {ν : MeasureTheory.Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : MeasureTheory.Memℒp f p) :
            theorem MeasureTheory.snorm'_le_snorm'_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {p : } {q : } (hp0_lt : 0 < p) (hpq : p q) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) :
            MeasureTheory.snorm' f p μ MeasureTheory.snorm' f q μ * μ Set.univ ^ (1 / p - 1 / q)
            theorem MeasureTheory.snorm'_le_snormEssSup_mul_rpow_measure_univ {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hq_pos : 0 < q) {f : αF} :
            MeasureTheory.snorm' f q μ MeasureTheory.snormEssSup f μ * μ Set.univ ^ (1 / q)
            theorem MeasureTheory.snorm_le_snorm_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {p : ENNReal} {q : ENNReal} (hpq : p q) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) :
            MeasureTheory.snorm f p μ MeasureTheory.snorm f q μ * μ Set.univ ^ (1 / ENNReal.toReal p - 1 / ENNReal.toReal q)
            theorem MeasureTheory.snorm'_lt_top_of_snorm'_lt_top_of_exponent_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {p : } {q : } [MeasureTheory.IsFiniteMeasure μ] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfq_lt_top : MeasureTheory.snorm' f q μ < ) (hp_nonneg : 0 p) (hpq : p q) :
            theorem MeasureTheory.pow_mul_meas_ge_le_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
            (ε * μ {x : α | ε f x‖₊ ^ ENNReal.toReal p}) ^ (1 / ENNReal.toReal p) MeasureTheory.snorm f p μ
            theorem MeasureTheory.mul_meas_ge_le_pow_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
            ε * μ {x : α | ε f x‖₊ ^ ENNReal.toReal p} MeasureTheory.snorm f p μ ^ ENNReal.toReal p
            theorem MeasureTheory.mul_meas_ge_le_pow_snorm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
            ε ^ ENNReal.toReal p * μ {x : α | ε f x‖₊} MeasureTheory.snorm f p μ ^ ENNReal.toReal p

            A version of Markov's inequality using Lp-norms.

            theorem MeasureTheory.meas_ge_le_mul_pow_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) {ε : ENNReal} (hε : ε 0) :
            μ {x : α | ε f x‖₊} ε⁻¹ ^ ENNReal.toReal p * MeasureTheory.snorm f p μ ^ ENNReal.toReal p
            theorem MeasureTheory.snorm'_sum_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {ι : Type u_5} {f : ιαE} {s : Finset ι} (hfs : is, MeasureTheory.AEStronglyMeasurable (f i) μ) (hq1 : 1 q) :
            MeasureTheory.snorm' (Finset.sum s fun (i : ι) => f i) q μ Finset.sum s fun (i : ι) => MeasureTheory.snorm' (f i) q μ
            theorem MeasureTheory.snorm_sum_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {ι : Type u_5} {f : ιαE} {s : Finset ι} (hfs : is, MeasureTheory.AEStronglyMeasurable (f i) μ) (hp1 : 1 p) :
            MeasureTheory.snorm (Finset.sum s fun (i : ι) => f i) p μ Finset.sum s fun (i : ι) => MeasureTheory.snorm (f i) p μ
            theorem MeasureTheory.Memℒp.add {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.Memℒp f p) (hg : MeasureTheory.Memℒp g p) :
            theorem MeasureTheory.Memℒp.sub {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.Memℒp f p) (hg : MeasureTheory.Memℒp g p) :
            theorem MeasureTheory.memℒp_finset_sum {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {ι : Type u_5} (s : Finset ι) {f : ιαE} (hf : is, MeasureTheory.Memℒp (f i) p) :
            MeasureTheory.Memℒp (fun (a : α) => Finset.sum s fun (i : ι) => f i a) p
            theorem MeasureTheory.memℒp_finset_sum' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {ι : Type u_5} (s : Finset ι) {f : ιαE} (hf : is, MeasureTheory.Memℒp (f i) p) :
            MeasureTheory.Memℒp (Finset.sum s fun (i : ι) => f i) p
            theorem MeasureTheory.snorm'_le_nnreal_smul_snorm'_of_ae_le_mul {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) {p : } (hp : 0 < p) :
            theorem MeasureTheory.snormEssSup_le_nnreal_smul_snormEssSup_of_ae_le_mul {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) :
            theorem MeasureTheory.snorm_le_nnreal_smul_snorm_of_ae_le_mul {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) (p : ENNReal) :
            theorem MeasureTheory.snorm_eq_zero_and_zero_of_ae_le_mul_neg {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) ∂μ, f x c * g x) (hc : c < 0) (p : ENNReal) :

            When c is negative, ‖f x‖ ≤ c * ‖g x‖ is nonsense and forces both f and g to have an snorm of 0.

            theorem MeasureTheory.snorm_le_mul_snorm_of_ae_le_mul {α : Type u_1} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) ∂μ, f x c * g x) (p : ENNReal) :
            theorem MeasureTheory.Memℒp.of_nnnorm_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : NNReal} (hg : MeasureTheory.Memℒp g p) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) :
            theorem MeasureTheory.Memℒp.of_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : } (hg : MeasureTheory.Memℒp g p) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) ∂μ, f x c * g x) :
            theorem MeasureTheory.snorm'_le_snorm'_mul_snorm' {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {p : } {q : } {r : } {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {g : αF} (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
            MeasureTheory.snorm' (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm' f q μ * MeasureTheory.snorm' g r μ
            theorem MeasureTheory.snorm_le_snorm_top_mul_snorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] (p : ENNReal) (f : αE) {g : αF} (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
            MeasureTheory.snorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm f μ * MeasureTheory.snorm g p μ
            theorem MeasureTheory.snorm_le_snorm_mul_snorm_top {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] (p : ENNReal) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (g : αF) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
            MeasureTheory.snorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm f p μ * MeasureTheory.snorm g μ
            theorem MeasureTheory.snorm_le_snorm_mul_snorm_of_nnnorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {p : ENNReal} {q : ENNReal} {r : ENNReal} {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {g : αF} (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hpqr : 1 / p = 1 / q + 1 / r) :
            MeasureTheory.snorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm f q μ * MeasureTheory.snorm g r μ

            Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

            theorem MeasureTheory.snorm_le_snorm_mul_snorm'_of_norm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {p : ENNReal} {q : ENNReal} {r : ENNReal} {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {g : αF} (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x) f x * g x) (hpqr : 1 / p = 1 / q + 1 / r) :
            MeasureTheory.snorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm f q μ * MeasureTheory.snorm g r μ

            Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

            Bounded actions by normed rings #

            In this section we show inequalities on the norm.

            theorem MeasureTheory.snorm'_const_smul_le {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) (hq_pos : 0 < q) :
            theorem MeasureTheory.snormEssSup_const_smul_le {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) :
            theorem MeasureTheory.snorm_const_smul_le {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) :
            theorem MeasureTheory.Memℒp.const_smul {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {f : αE} (hf : MeasureTheory.Memℒp f p) (c : 𝕜) :
            theorem MeasureTheory.Memℒp.const_mul {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {R : Type u_6} [NormedRing R] {f : αR} (hf : MeasureTheory.Memℒp f p) (c : R) :
            MeasureTheory.Memℒp (fun (x : α) => c * f x) p
            theorem MeasureTheory.snorm'_smul_le_mul_snorm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : } {q : } {r : } {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
            theorem MeasureTheory.snorm_smul_le_snorm_top_mul_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] (p : ENNReal) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (φ : α𝕜) :
            theorem MeasureTheory.snorm_smul_le_snorm_mul_snorm_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] (p : ENNReal) (f : αE) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) :
            theorem MeasureTheory.snorm_smul_le_mul_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {q : ENNReal} {r : ENNReal} {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hpqr : 1 / p = 1 / q + 1 / r) :

            Hölder's inequality, as an inequality on the ℒp seminorm of a scalar product φ • f.

            theorem MeasureTheory.Memℒp.smul {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {q : ENNReal} {r : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f r) (hφ : MeasureTheory.Memℒp φ q) (hpqr : 1 / p = 1 / q + 1 / r) :
            theorem MeasureTheory.Memℒp.smul_of_top_right {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f p) (hφ : MeasureTheory.Memℒp φ ) :
            theorem MeasureTheory.Memℒp.smul_of_top_left {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f ) (hφ : MeasureTheory.Memℒp φ p) :

            Bounded actions by normed division rings #

            The inequalities in the previous section are now tight.

            theorem MeasureTheory.snorm'_const_smul {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_5} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] {f : αF} (c : 𝕜) (hq_pos : 0 < q) :
            theorem MeasureTheory.snormEssSup_const_smul {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_5} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) :
            theorem MeasureTheory.snorm_const_smul {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_5} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) :
            theorem MeasureTheory.snorm_indicator_ge_of_bdd_below {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp : p 0) (hp' : p ) {f : αF} (C : NNReal) {s : Set α} (hs : MeasurableSet s) (hf : ∀ᵐ (x : α) ∂μ, x sC Set.indicator s f x‖₊) :
            C μ s ^ (1 / ENNReal.toReal p) MeasureTheory.snorm (Set.indicator s f) p μ
            theorem MeasureTheory.Memℒp.re {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {𝕜 : Type u_5} [IsROrC 𝕜] {f : α𝕜} (hf : MeasureTheory.Memℒp f p) :
            MeasureTheory.Memℒp (fun (x : α) => IsROrC.re (f x)) p
            theorem MeasureTheory.Memℒp.im {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {𝕜 : Type u_5} [IsROrC 𝕜] {f : α𝕜} (hf : MeasureTheory.Memℒp f p) :
            MeasureTheory.Memℒp (fun (x : α) => IsROrC.im (f x)) p
            theorem MeasureTheory.ae_bdd_liminf_atTop_rpow_of_snorm_bdd {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), MeasureTheory.snorm (f n) p μ R) :
            ∀ᵐ (x : α) ∂μ, Filter.liminf (fun (n : ) => f n x‖₊ ^ ENNReal.toReal p) Filter.atTop <
            theorem MeasureTheory.ae_bdd_liminf_atTop_of_snorm_bdd {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} (hp : p 0) {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), MeasureTheory.snorm (f n) p μ R) :
            ∀ᵐ (x : α) ∂μ, Filter.liminf (fun (n : ) => f n x‖₊) Filter.atTop <

            A continuous function with compact support belongs to L^∞.