Documentation

Mathlib.ModelTheory.DirectLimit

Direct Limits of First-Order Structures #

This file constructs the direct limit of a directed system of first-order embeddings.

Main Definitions #

theorem FirstOrder.Language.DirectedSystem.map_self {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] (i : ι) (x : G i) (h : i i) :
(f i i h) x = x

A copy of DirectedSystem.map_self specialized to L-embeddings, as otherwise the λ i j h, f i j h can confuse the simplifier.

theorem FirstOrder.Language.DirectedSystem.map_map {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {i : ι} {j : ι} {k : ι} (hij : i j) (hjk : j k) (x : G i) :
(f j k hjk) ((f i j hij) x) = (f i k (_ : i k)) x

A copy of DirectedSystem.map_map specialized to L-embeddings, as otherwise the λ i j h, f i j h can confuse the simplifier.

def FirstOrder.Language.DirectedSystem.natLERec {L : FirstOrder.Language} {G' : Type w} [(i : ) → FirstOrder.Language.Structure L (G' i)] (f' : (n : ) → FirstOrder.Language.Embedding L (G' n) (G' (n + 1))) (m : ) (n : ) (h : m n) :

Given a chain of embeddings of structures indexed by , defines a DirectedSystem by composing them.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem FirstOrder.Language.DirectedSystem.coe_natLERec {L : FirstOrder.Language} {G' : Type w} [(i : ) → FirstOrder.Language.Structure L (G' i)] (f' : (n : ) → FirstOrder.Language.Embedding L (G' n) (G' (n + 1))) (m : ) (n : ) (h : m n) :
    (FirstOrder.Language.DirectedSystem.natLERec f' m n h) = fun (a : G' m) => Nat.leRecOn h (fun (k : ) => (f' k)) a
    Equations
    • One or more equations did not get rendered due to their size.
    @[inline, reducible]
    abbrev FirstOrder.Language.Structure.Sigma {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) :
    Type (max v w)

    Alias for Σ i, G i.

    Equations
    Instances For
      @[inline, reducible]
      abbrev FirstOrder.Language.Structure.Sigma.mk {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) (i : ι) (x : G i) :

      Constructor for FirstOrder.Language.Structure.Sigma alias.

      Equations
      Instances For
        def FirstOrder.Language.DirectLimit.unify {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) {α : Type u_1} (x : αFirstOrder.Language.Structure.Sigma f) (i : ι) (h : i upperBounds (Set.range (Sigma.fst x))) (a : α) :
        G i

        Raises a family of elements in the Σ-type to the same level along the embeddings.

        Equations
        Instances For
          @[simp]
          theorem FirstOrder.Language.DirectLimit.unify_sigma_mk_self {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {α : Type u_1} {i : ι} {x : αG i} :
          FirstOrder.Language.DirectLimit.unify f (fun (a : α) => FirstOrder.Language.Structure.Sigma.mk f i (x a)) i (_ : jSet.range (Sigma.fst fun (a : α) => FirstOrder.Language.Structure.Sigma.mk f i (x a)), j i) = x
          theorem FirstOrder.Language.DirectLimit.comp_unify {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {α : Type u_1} {x : αFirstOrder.Language.Structure.Sigma f} {i : ι} {j : ι} (ij : i j) (h : i upperBounds (Set.range (Sigma.fst x))) :
          (f i j ij) FirstOrder.Language.DirectLimit.unify f x i h = FirstOrder.Language.DirectLimit.unify f x j (_ : kSet.range (Sigma.fst x), k j)
          def FirstOrder.Language.DirectLimit.setoid {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [IsDirected ι fun (x x_1 : ι) => x x_1] :

          The directed limit glues together the structures along the embeddings.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def FirstOrder.Language.DirectLimit.sigmaStructure {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [Nonempty ι] :

            The structure on the Σ-type which becomes the structure on the direct limit after quotienting.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def FirstOrder.Language.DirectLimit {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [IsDirected ι fun (x x_1 : ι) => x x_1] :
              Type (max v w)

              The direct limit of a directed system is the structures glued together along the embeddings.

              Equations
              Instances For
                instance FirstOrder.Language.instInhabitedDirectLimit {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [IsDirected ι fun (x x_1 : ι) => x x_1] [Inhabited ι] [Inhabited (G default)] :
                Equations
                theorem FirstOrder.Language.DirectLimit.equiv_iff {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {x : FirstOrder.Language.Structure.Sigma f} {y : FirstOrder.Language.Structure.Sigma f} {i : ι} (hx : x.fst i) (hy : y.fst i) :
                x y (f x.fst i hx) x.snd = (f y.fst i hy) y.snd
                theorem FirstOrder.Language.DirectLimit.funMap_unify_equiv {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {n : } (F : L.Functions n) (x : Fin nFirstOrder.Language.Structure.Sigma f) (i : ι) (j : ι) (hi : i upperBounds (Set.range (Sigma.fst x))) (hj : j upperBounds (Set.range (Sigma.fst x))) :
                theorem FirstOrder.Language.DirectLimit.relMap_unify_equiv {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {n : } (R : L.Relations n) (x : Fin nFirstOrder.Language.Structure.Sigma f) (i : ι) (j : ι) (hi : i upperBounds (Set.range (Sigma.fst x))) (hj : j upperBounds (Set.range (Sigma.fst x))) :
                theorem FirstOrder.Language.DirectLimit.exists_unify_eq {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {α : Type u_1} [Fintype α] {x : αFirstOrder.Language.Structure.Sigma f} {y : αFirstOrder.Language.Structure.Sigma f} (xy : x y) :
                ∃ (i : ι) (hx : i upperBounds (Set.range (Sigma.fst x))) (hy : i upperBounds (Set.range (Sigma.fst y))), FirstOrder.Language.DirectLimit.unify f x i hx = FirstOrder.Language.DirectLimit.unify f y i hy
                theorem FirstOrder.Language.DirectLimit.funMap_equiv_unify {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {n : } (F : L.Functions n) (x : Fin nFirstOrder.Language.Structure.Sigma f) (i : ι) (hi : i upperBounds (Set.range (Sigma.fst x))) :
                theorem FirstOrder.Language.DirectLimit.relMap_equiv_unify {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {n : } (R : L.Relations n) (x : Fin nFirstOrder.Language.Structure.Sigma f) (i : ι) (hi : i upperBounds (Set.range (Sigma.fst x))) :
                noncomputable instance FirstOrder.Language.DirectLimit.prestructure {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] :

                The direct limit setoid respects the structure sigmaStructure, so quotienting by it gives rise to a valid structure.

                Equations
                • One or more equations did not get rendered due to their size.
                noncomputable instance FirstOrder.Language.DirectLimit.instStructureDirectLimit {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] :

                The L.Structure on a direct limit of L.Structures.

                Equations
                @[simp]
                theorem FirstOrder.Language.DirectLimit.funMap_quotient_mk'_sigma_mk' {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {n : } {F : L.Functions n} {i : ι} {x : Fin nG i} :
                @[simp]
                theorem FirstOrder.Language.DirectLimit.relMap_quotient_mk'_sigma_mk' {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {n : } {R : L.Relations n} {i : ι} {x : Fin nG i} :
                theorem FirstOrder.Language.DirectLimit.exists_quotient_mk'_sigma_mk'_eq {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {α : Type u_1} [Fintype α] (x : αFirstOrder.Language.DirectLimit G f) :
                ∃ (i : ι) (y : αG i), x = fun (a : α) => FirstOrder.Language.Structure.Sigma.mk f i (y a)
                def FirstOrder.Language.DirectLimit.of (L : FirstOrder.Language) (ι : Type v) [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] (i : ι) :

                The canonical map from a component to the direct limit.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem FirstOrder.Language.DirectLimit.of_apply {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] {f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)} [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {i : ι} {x : G i} :
                  theorem FirstOrder.Language.DirectLimit.of_f {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] {f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)} [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {i : ι} {j : ι} {hij : i j} {x : G i} :
                  (FirstOrder.Language.DirectLimit.of L ι G f j) ((f i j hij) x) = (FirstOrder.Language.DirectLimit.of L ι G f i) x
                  theorem FirstOrder.Language.DirectLimit.exists_of {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] {f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)} [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] (z : FirstOrder.Language.DirectLimit G f) :
                  ∃ (i : ι) (x : G i), (FirstOrder.Language.DirectLimit.of L ι G f i) x = z

                  Every element of the direct limit corresponds to some element in some component of the directed system.

                  theorem FirstOrder.Language.DirectLimit.inductionOn {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] {f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)} [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {C : FirstOrder.Language.DirectLimit G fProp} (z : FirstOrder.Language.DirectLimit G f) (ih : ∀ (i : ι) (x : G i), C ((FirstOrder.Language.DirectLimit.of L ι G f i) x)) :
                  C z
                  def FirstOrder.Language.DirectLimit.lift (L : FirstOrder.Language) (ι : Type v) [Preorder ι] (G : ιType w) [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {P : Type u₁} [FirstOrder.Language.Structure L P] (g : (i : ι) → FirstOrder.Language.Embedding L (G i) P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) ((f i j hij) x) = (g i) x) :

                  The universal property of the direct limit: maps from the components to another module that respect the directed system structure (i.e. make some diagram commute) give rise to a unique map out of the direct limit.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem FirstOrder.Language.DirectLimit.lift_quotient_mk'_sigma_mk' {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] {f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)} [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {P : Type u₁} [FirstOrder.Language.Structure L P] (g : (i : ι) → FirstOrder.Language.Embedding L (G i) P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) ((f i j hij) x) = (g i) x) {i : ι} (x : G i) :
                    theorem FirstOrder.Language.DirectLimit.lift_of {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] {f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)} [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {P : Type u₁} [FirstOrder.Language.Structure L P] (g : (i : ι) → FirstOrder.Language.Embedding L (G i) P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) ((f i j hij) x) = (g i) x) {i : ι} (x : G i) :
                    theorem FirstOrder.Language.DirectLimit.lift_unique {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] {f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)} [IsDirected ι fun (x x_1 : ι) => x x_1] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {P : Type u₁} [FirstOrder.Language.Structure L P] (F : FirstOrder.Language.Embedding L (FirstOrder.Language.DirectLimit G f) P) (x : FirstOrder.Language.DirectLimit G f) :
                    F x = (FirstOrder.Language.DirectLimit.lift L ι G f (fun (i : ι) => FirstOrder.Language.Embedding.comp F (FirstOrder.Language.DirectLimit.of L ι G f i)) (_ : ∀ (i j : ι) (hij : i j) (x : G i), ((fun (i : ι) => FirstOrder.Language.Embedding.comp F (FirstOrder.Language.DirectLimit.of L ι G f i)) j) ((f i j hij) x) = ((fun (i : ι) => FirstOrder.Language.Embedding.comp F (FirstOrder.Language.DirectLimit.of L ι G f i)) i) x)) x
                    theorem FirstOrder.Language.DirectLimit.cg {L : FirstOrder.Language} {ι : Type u_1} [Encodable ι] [Preorder ι] [IsDirected ι fun (x x_1 : ι) => x x_1] [Nonempty ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) (h : ∀ (i : ι), FirstOrder.Language.Structure.CG L (G i)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] :

                    The direct limit of countably many countably generated structures is countably generated.

                    instance FirstOrder.Language.DirectLimit.cg' {L : FirstOrder.Language} {ι : Type u_1} [Encodable ι] [Preorder ι] [IsDirected ι fun (x x_1 : ι) => x x_1] [Nonempty ι] {G : ιType w} [(i : ι) → FirstOrder.Language.Structure L (G i)] (f : (i j : ι) → i jFirstOrder.Language.Embedding L (G i) (G j)) [h : ∀ (i : ι), FirstOrder.Language.Structure.CG L (G i)] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] :
                    Equations