Documentation

Mathlib.NumberTheory.Rayleigh

Rayleigh's theorem on Beatty sequences #

This file proves Rayleigh's theorem on Beatty sequences. We start by proving compl_beattySeq, which is a generalization of Rayleigh's theorem, and eventually prove Irrational.beattySeq_symmDiff_beattySeq_pos, which is Rayleigh's theorem.

Main definitions #

Main statements #

Define the following Beatty sets, where r denotes a real number:

The main statements are:

References #

Tags #

beatty, sequence, rayleigh, irrational, floor, positive

noncomputable def beattySeq (r : ) :

In the Beatty sequence for real number r, the kth term is ⌊k * r⌋.

Equations
Instances For
    noncomputable def beattySeq' (r : ) :

    In this variant of the Beatty sequence for r, the kth term is ⌈k * r⌉ - 1.

    Equations
    Instances For
      theorem compl_beattySeq {r : } {s : } (hrs : Real.IsConjugateExponent r s) :
      {x : | ∃ (k : ), beattySeq r k = x} = {x : | ∃ (k : ), beattySeq' s k = x}

      Generalization of Rayleigh's theorem on Beatty sequences. Let r be a real number greater than 1, and 1/r + 1/s = 1. Then the complement of B_r is B'_s.

      theorem compl_beattySeq' {r : } {s : } (hrs : Real.IsConjugateExponent r s) :
      {x : | ∃ (k : ), beattySeq' r k = x} = {x : | ∃ (k : ), beattySeq s k = x}
      theorem beattySeq_symmDiff_beattySeq'_pos {r : } {s : } (hrs : Real.IsConjugateExponent r s) :
      symmDiff {x : | ∃ k > 0, beattySeq r k = x} {x : | ∃ k > 0, beattySeq' s k = x} = {n : | 0 < n}

      Generalization of Rayleigh's theorem on Beatty sequences. Let r be a real number greater than 1, and 1/r + 1/s = 1. Then B⁺_r and B⁺'_s partition the positive integers.

      theorem beattySeq'_symmDiff_beattySeq_pos {r : } {s : } (hrs : Real.IsConjugateExponent r s) :
      symmDiff {x : | ∃ k > 0, beattySeq' r k = x} {x : | ∃ k > 0, beattySeq s k = x} = {n : | 0 < n}
      theorem Irrational.beattySeq'_pos_eq {r : } (hr : Irrational r) :
      {x : | ∃ k > 0, beattySeq' r k = x} = {x : | ∃ k > 0, beattySeq r k = x}

      Let r be an irrational number. Then B⁺_r and B⁺'_r are equal.

      theorem Irrational.beattySeq_symmDiff_beattySeq_pos {r : } {s : } (hrs : Real.IsConjugateExponent r s) (hr : Irrational r) :
      symmDiff {x : | ∃ k > 0, beattySeq r k = x} {x : | ∃ k > 0, beattySeq s k = x} = {n : | 0 < n}

      Rayleigh's theorem on Beatty sequences. Let r be an irrational number greater than 1, and 1/r + 1/s = 1. Then B⁺_r and B⁺_s partition the positive integers.