The category of bounded orders with monotone functions.
- toPartOrd : PartOrd
The underlying object in the category of partial orders.
- isBoundedOrder : BoundedOrder ↑self.toPartOrd
Instances For
Equations
- BddOrd.instPartialOrderαToPartOrd X = X.toPartOrd.str
@[simp]
Equations
- BddOrd.instInhabitedBddOrd = { default := BddOrd.of PUnit.{u_1 + 1} }
Equations
- BddOrd.largeCategory = CategoryTheory.Category.mk
Equations
- BddOrd.instFunLike X Y = let_fun this := inferInstance; this
Equations
- BddOrd.concreteCategory = CategoryTheory.ConcreteCategory.mk (CategoryTheory.Functor.mk { obj := fun (x : BddOrd) => ↑x.toPartOrd, map := fun {X Y : BddOrd} => DFunLike.coe })
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
BddOrd.dual_map
{X : BddOrd}
{Y : BddOrd}
(a : BoundedOrderHom ↑X.toPartOrd ↑Y.toPartOrd)
:
BddOrd.dual.toPrefunctor.map a = BoundedOrderHom.dual a
@[simp]
OrderDual
as a functor.
Equations
- BddOrd.dual = CategoryTheory.Functor.mk { obj := fun (X : BddOrd) => BddOrd.of (↑X.toPartOrd)ᵒᵈ, map := fun {X Y : BddOrd} => ⇑BoundedOrderHom.dual }
Instances For
@[simp]
theorem
BddOrd.Iso.mk_hom
{α : BddOrd}
{β : BddOrd}
(e : ↑α.toPartOrd ≃o ↑β.toPartOrd)
:
(BddOrd.Iso.mk e).hom = ↑e
@[simp]
theorem
BddOrd.Iso.mk_inv
{α : BddOrd}
{β : BddOrd}
(e : ↑α.toPartOrd ≃o ↑β.toPartOrd)
:
(BddOrd.Iso.mk e).inv = ↑(OrderIso.symm e)
Constructs an equivalence between bounded orders from an order isomorphism between them.
Equations
- BddOrd.Iso.mk e = CategoryTheory.Iso.mk ↑e ↑(OrderIso.symm e)