Category of partial orders #
This defines PartOrd
, the category of partial orders with monotone maps.
The category of partially ordered types.
Equations
Instances For
Equations
- PartOrd.instCoeSortPartOrdType = CategoryTheory.Bundled.coeSort
Construct a bundled PartOrd from the underlying type and typeclass.
Equations
Instances For
Equations
- PartOrd.instInhabitedPartOrd = { default := PartOrd.of PUnit.{u_1 + 1} }
Equations
- PartOrd.instPartialOrderα α = α.str
@[simp]
theorem
PartOrd.Iso.mk_inv
{α : PartOrd}
{β : PartOrd}
(e : ↑α ≃o ↑β)
:
(PartOrd.Iso.mk e).inv = ↑(OrderIso.symm e)
@[simp]
Constructs an equivalence between partial orders from an order isomorphism between them.
Equations
- PartOrd.Iso.mk e = CategoryTheory.Iso.mk ↑e ↑(OrderIso.symm e)
Instances For
@[simp]
theorem
PartOrd.dual_map :
∀ {X Y : PartOrd} (a : ↑X →o ↑Y), PartOrd.dual.toPrefunctor.map a = OrderHom.dual a
@[simp]
OrderDual
as a functor.
Equations
- PartOrd.dual = CategoryTheory.Functor.mk { obj := fun (X : PartOrd) => PartOrd.of (↑X)ᵒᵈ, map := fun {X Y : PartOrd} => ⇑OrderHom.dual }
Instances For
antisymmetrization
as a functor. It is the free functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_coe
(X : Preord)
(a : ↑((CategoryTheory.Functor.comp Preord.dual preordToPartOrd).toPrefunctor.obj X))
:
(preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd.inv.app X) a = (OrderIso.symm (OrderIso.dualAntisymmetrization ↑X)) a
theorem
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_coe
(X : Preord)
(a : ↑((CategoryTheory.Functor.comp preordToPartOrd PartOrd.dual).toPrefunctor.obj X))
:
(preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd.hom.app X) a = (OrderIso.dualAntisymmetrization ↑X) a
PreordToPartOrd
and OrderDual
commute.