Documentation

Mathlib.Order.Category.FinBddDistLat

The category of finite bounded distributive lattices #

This file defines FinBddDistLat, the category of finite distributive lattices with bounded lattice homomorphisms.

structure FinBddDistLat :
Type (u_1 + 1)

The category of finite distributive lattices with bounded lattice morphisms.

Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem FinBddDistLat.Iso.mk_inv_toLatticeHom_toSupHom_toFun {α : FinBddDistLat} {β : FinBddDistLat} (e : α.toBddDistLat.toDistLat ≃o β.toBddDistLat.toDistLat) (a : β.toBddDistLat.toDistLat) :
    (FinBddDistLat.Iso.mk e).inv.toSupHom a = (OrderIso.symm e) a
    @[simp]
    theorem FinBddDistLat.Iso.mk_hom_toLatticeHom_toSupHom_toFun {α : FinBddDistLat} {β : FinBddDistLat} (e : α.toBddDistLat.toDistLat ≃o β.toBddDistLat.toDistLat) (a : α.toBddDistLat.toDistLat) :
    (FinBddDistLat.Iso.mk e).hom.toSupHom a = e a
    def FinBddDistLat.Iso.mk {α : FinBddDistLat} {β : FinBddDistLat} (e : α.toBddDistLat.toDistLat ≃o β.toBddDistLat.toDistLat) :
    α β

    Constructs an equivalence between finite distributive lattices from an order isomorphism between them.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem FinBddDistLat.dual_map {X : FinBddDistLat} {Y : FinBddDistLat} (a : BoundedLatticeHom (BddDistLat.toBddLat X.toBddDistLat).toLat (BddDistLat.toBddLat Y.toBddDistLat).toLat) :
      FinBddDistLat.dual.toPrefunctor.map a = BoundedLatticeHom.dual a
      @[simp]
      theorem FinBddDistLat.dual_obj (X : FinBddDistLat) :
      FinBddDistLat.dual.toPrefunctor.obj X = FinBddDistLat.of (X.toBddDistLat.toDistLat)ᵒᵈ

      OrderDual as a functor.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The equivalence between FinBddDistLat and itself induced by OrderDual both ways.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For