The category of finite partial orders #
This defines FinPartOrd
, the category of finite partial orders.
Note: FinPartOrd
is not a subcategory of BddOrd
because finite orders are not necessarily
bounded.
TODO #
FinPartOrd
is equivalent to a small category.
The category of finite partial orders with monotone functions.
Instances For
Equations
- FinPartOrd.instCoeSortFinPartOrdType = { coe := fun (X : FinPartOrd) => ↑X.toPartOrd }
Equations
- FinPartOrd.instPartialOrderαToPartOrd X = X.toPartOrd.str
@[simp]
theorem
FinPartOrd.coe_of
(α : Type u_1)
[PartialOrder α]
[Fintype α]
:
↑(FinPartOrd.of α).toPartOrd = α
Equations
- FinPartOrd.instInhabitedFinPartOrd = { default := FinPartOrd.of PUnit.{u_1 + 1} }
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
FinPartOrd.Iso.mk_hom
{α : FinPartOrd}
{β : FinPartOrd}
(e : ↑α.toPartOrd ≃o ↑β.toPartOrd)
:
(FinPartOrd.Iso.mk e).hom = ↑e
@[simp]
theorem
FinPartOrd.Iso.mk_inv
{α : FinPartOrd}
{β : FinPartOrd}
(e : ↑α.toPartOrd ≃o ↑β.toPartOrd)
:
(FinPartOrd.Iso.mk e).inv = ↑(OrderIso.symm e)
Constructs an isomorphism of finite partial orders from an order isomorphism between them.
Equations
- FinPartOrd.Iso.mk e = CategoryTheory.Iso.mk ↑e ↑(OrderIso.symm e)
Instances For
@[simp]
theorem
FinPartOrd.dual_obj
(X : FinPartOrd)
:
FinPartOrd.dual.toPrefunctor.obj X = FinPartOrd.of (↑X.toPartOrd)ᵒᵈ
@[simp]
theorem
FinPartOrd.dual_map
{X : FinPartOrd}
{Y : FinPartOrd}
(a : ↑X.toPartOrd →o ↑Y.toPartOrd)
:
FinPartOrd.dual.toPrefunctor.map a = OrderHom.dual a
OrderDual
as a functor.
Equations
- FinPartOrd.dual = CategoryTheory.Functor.mk { obj := fun (X : FinPartOrd) => FinPartOrd.of (↑X.toPartOrd)ᵒᵈ, map := fun {X Y : FinPartOrd} => ⇑OrderHom.dual }
Instances For
The equivalence between FinPartOrd
and itself induced by OrderDual
both ways.
Equations
- One or more equations did not get rendered due to their size.