The category of lattices #
This defines Lat
, the category of lattices.
Note that Lat
doesn't correspond to the literature definition of [Lat
]
(https://ncatlab.org/nlab/show/Lat) as we don't require bottom or top elements. Instead, Lat
corresponds to BddLat
.
TODO #
The free functor from Lat
to BddLat
is X → WithTop (WithBot X)
.
Equations
- Lat.instCoeSortLatType = CategoryTheory.Bundled.coeSort
Equations
- Lat.instInhabitedLat = { default := Lat.of Bool }
Equations
- Lat.instBundledHomTypeLatticeLatticeHom = CategoryTheory.BundledHom.mk (fun {α β : Type u_1} (x : Lattice α) (x_1 : Lattice β) (f : LatticeHom α β) => f.toFun) LatticeHom.id @LatticeHom.comp
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
Lat.Iso.mk_hom_toSupHom_toFun
{α : Lat}
{β : Lat}
(e : ↑α ≃o ↑β)
(a : ↑α)
:
(Lat.Iso.mk e).hom.toSupHom a = e a
@[simp]
theorem
Lat.Iso.mk_inv_toSupHom_toFun
{α : Lat}
{β : Lat}
(e : ↑α ≃o ↑β)
(a : ↑β)
:
(Lat.Iso.mk e).inv.toSupHom a = (OrderIso.symm e) a
@[simp]
theorem
Lat.dual_map :
∀ {X Y : Lat} (a : LatticeHom ↑X ↑Y), Lat.dual.toPrefunctor.map a = LatticeHom.dual a