The category of linear orders.
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- LinOrd.instCoeSortLinOrdType = CategoryTheory.Bundled.coeSort
Equations
- LinOrd.instInhabitedLinOrd = { default := LinOrd.of PUnit.{u_1 + 1} }
Equations
- LinOrd.instLinearOrderα α = α.str
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem
LinOrd.Iso.mk_inv
{α : LinOrd}
{β : LinOrd}
(e : ↑α ≃o ↑β)
:
(LinOrd.Iso.mk e).inv = ↑(OrderIso.symm e)
Constructs an equivalence between linear orders from an order isomorphism between them.
Equations
- LinOrd.Iso.mk e = CategoryTheory.Iso.mk ↑e ↑(OrderIso.symm e)
Instances For
@[simp]
theorem
LinOrd.dual_map :
∀ {X Y : LinOrd} (a : ↑X →o ↑Y), LinOrd.dual.toPrefunctor.map a = OrderHom.dual a
@[simp]
OrderDual
as a functor.
Equations
- LinOrd.dual = CategoryTheory.Functor.mk { obj := fun (X : LinOrd) => LinOrd.of (↑X)ᵒᵈ, map := fun {X Y : LinOrd} => ⇑OrderHom.dual }