Documentation

Mathlib.Probability.Kernel.Disintegration

Disintegration of measures on product spaces #

Let ρ be a finite measure on α × Ω, where Ω is a standard Borel space. In mathlib terms, Ω verifies [Nonempty Ω] [MeasurableSpace Ω] [StandardBorelSpace Ω]. Then there exists a kernel ρ.condKernel : kernel α Ω such that for any measurable set s : Set (α × Ω), ρ s = ∫⁻ a, ρ.condKernel a {x | (a, x) ∈ s} ∂ρ.fst.

In terms of kernels, ρ.condKernel is such that for any measurable space γ, we have a disintegration of the constant kernel from γ with value ρ: kernel.const γ ρ = (kernel.const γ ρ.fst) ⊗ₖ (kernel.prodMkLeft γ (condKernel ρ)), where ρ.fst is the marginal measure of ρ on α. In particular, ρ = ρ.fst ⊗ₘ ρ.condKernel.

In order to obtain a disintegration for any standard Borel space, we use that these spaces embed measurably into : it then suffices to define a suitable kernel for Ω = ℝ. In the real case, we define a conditional kernel by taking for each a : α the measure associated to the Stieltjes function condCDF ρ a (the conditional cumulative distribution function).

Main definitions #

Main statements #

Disintegration of measures on α × ℝ #

Conditional measure on the second space of the product given the value on the first, as a kernel. Use the more general condKernel.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem ProbabilityTheory.set_lintegral_condKernelReal_univ {α : Type u_1} {mα : MeasurableSpace α} (ρ : MeasureTheory.Measure (α × )) {s : Set α} (hs : MeasurableSet s) :
    ∫⁻ (a : α) in s, ((ProbabilityTheory.condKernelReal ρ) a) Set.univMeasureTheory.Measure.fst ρ = ρ (s ×ˢ Set.univ)
    theorem ProbabilityTheory.lintegral_condKernelReal_univ {α : Type u_1} {mα : MeasurableSpace α} (ρ : MeasureTheory.Measure (α × )) :
    ∫⁻ (a : α), ((ProbabilityTheory.condKernelReal ρ) a) Set.univMeasureTheory.Measure.fst ρ = ρ Set.univ
    theorem ProbabilityTheory.set_lintegral_condKernelReal_prod {α : Type u_1} {mα : MeasurableSpace α} (ρ : MeasureTheory.Measure (α × )) [MeasureTheory.IsFiniteMeasure ρ] {s : Set α} (hs : MeasurableSet s) {t : Set } (ht : MeasurableSet t) :
    ∫⁻ (a : α) in s, ((ProbabilityTheory.condKernelReal ρ) a) tMeasureTheory.Measure.fst ρ = ρ (s ×ˢ t)
    theorem ProbabilityTheory.lintegral_condKernelReal_mem {α : Type u_1} {mα : MeasurableSpace α} (ρ : MeasureTheory.Measure (α × )) [MeasureTheory.IsFiniteMeasure ρ] {s : Set (α × )} (hs : MeasurableSet s) :
    ∫⁻ (a : α), ((ProbabilityTheory.condKernelReal ρ) a) {x : | (a, x) s}MeasureTheory.Measure.fst ρ = ρ s
    theorem ProbabilityTheory.lintegral_condKernelReal {α : Type u_1} {mα : MeasurableSpace α} (ρ : MeasureTheory.Measure (α × )) [MeasureTheory.IsFiniteMeasure ρ] {f : α × ENNReal} (hf : Measurable f) :
    ∫⁻ (a : α), ∫⁻ (y : ), f (a, y)(ProbabilityTheory.condKernelReal ρ) aMeasureTheory.Measure.fst ρ = ∫⁻ (x : α × ), f xρ
    theorem ProbabilityTheory.ae_condKernelReal_eq_one {α : Type u_1} {mα : MeasurableSpace α} (ρ : MeasureTheory.Measure (α × )) [MeasureTheory.IsFiniteMeasure ρ] {s : Set } (hs : MeasurableSet s) (hρ : ρ {x : α × | x.2 s} = 0) :
    ∀ᵐ (a : α) ∂MeasureTheory.Measure.fst ρ, ((ProbabilityTheory.condKernelReal ρ) a) s = 1

    Disintegration of measures on standard Borel spaces #

    Since every standard Borel space embeds measurably into , we can generalize the disintegration property on to all these spaces.

    @[irreducible]

    Conditional kernel of a measure on a product space: a Markov kernel such that ρ = ρ.fst ⊗ₘ ρ.condKernel (see ProbabilityTheory.measure_eq_compProd).

    Equations
    Instances For

      Disintegration of finite product measures on α × Ω, where Ω is standard Borel. Such a measure can be written as the composition-product of the constant kernel with value ρ.fst (marginal measure over α) and a Markov kernel from α to Ω. We call that Markov kernel ProbabilityTheory.condKernel ρ.

      Disintegration of constant kernels. A constant kernel on a product space α × Ω, where Ω is standard Borel, can be written as the composition-product of the constant kernel with value ρ.fst (marginal measure over α) and a Markov kernel from α to Ω. We call that Markov kernel ProbabilityTheory.condKernel ρ.

      theorem ProbabilityTheory.condKernel_apply_of_ne_zero {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] [MeasurableSingletonClass α] {ρ : MeasureTheory.Measure (α × Ω)} [MeasureTheory.IsFiniteMeasure ρ] {x : α} (hx : (MeasureTheory.Measure.fst ρ) {x} 0) (s : Set Ω) :
      ((MeasureTheory.Measure.condKernel ρ) x) s = ((MeasureTheory.Measure.fst ρ) {x})⁻¹ * ρ ({x} ×ˢ s)

      If the singleton {x} has non-zero mass for ρ.fst, then for all s : Set Ω, ρ.condKernel x s = (ρ.fst {x})⁻¹ * ρ ({x} ×ˢ s) .

      theorem ProbabilityTheory.lintegral_condKernel_mem {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] (ρ : MeasureTheory.Measure (α × Ω)) [MeasureTheory.IsFiniteMeasure ρ] {s : Set (α × Ω)} (hs : MeasurableSet s) :
      ∫⁻ (a : α), ((MeasureTheory.Measure.condKernel ρ) a) {x : Ω | (a, x) s}MeasureTheory.Measure.fst ρ = ρ s
      theorem ProbabilityTheory.set_lintegral_condKernel_eq_measure_prod {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] (ρ : MeasureTheory.Measure (α × Ω)) [MeasureTheory.IsFiniteMeasure ρ] {s : Set α} (hs : MeasurableSet s) {t : Set Ω} (ht : MeasurableSet t) :
      ∫⁻ (a : α) in s, ((MeasureTheory.Measure.condKernel ρ) a) tMeasureTheory.Measure.fst ρ = ρ (s ×ˢ t)
      theorem ProbabilityTheory.lintegral_condKernel {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] (ρ : MeasureTheory.Measure (α × Ω)) [MeasureTheory.IsFiniteMeasure ρ] {f : α × ΩENNReal} (hf : Measurable f) :
      ∫⁻ (a : α), ∫⁻ (ω : Ω), f (a, ω)(MeasureTheory.Measure.condKernel ρ) aMeasureTheory.Measure.fst ρ = ∫⁻ (x : α × Ω), f xρ
      theorem ProbabilityTheory.set_lintegral_condKernel {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] (ρ : MeasureTheory.Measure (α × Ω)) [MeasureTheory.IsFiniteMeasure ρ] {f : α × ΩENNReal} (hf : Measurable f) {s : Set α} (hs : MeasurableSet s) {t : Set Ω} (ht : MeasurableSet t) :
      ∫⁻ (a : α) in s, ∫⁻ (ω : Ω) in t, f (a, ω)(MeasureTheory.Measure.condKernel ρ) aMeasureTheory.Measure.fst ρ = ∫⁻ (x : α × Ω) in s ×ˢ t, f xρ
      theorem ProbabilityTheory.set_lintegral_condKernel_univ_right {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] (ρ : MeasureTheory.Measure (α × Ω)) [MeasureTheory.IsFiniteMeasure ρ] {f : α × ΩENNReal} (hf : Measurable f) {s : Set α} (hs : MeasurableSet s) :
      ∫⁻ (a : α) in s, ∫⁻ (ω : Ω), f (a, ω)(MeasureTheory.Measure.condKernel ρ) aMeasureTheory.Measure.fst ρ = ∫⁻ (x : α × Ω) in s ×ˢ Set.univ, f xρ
      theorem ProbabilityTheory.set_lintegral_condKernel_univ_left {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] (ρ : MeasureTheory.Measure (α × Ω)) [MeasureTheory.IsFiniteMeasure ρ] {f : α × ΩENNReal} (hf : Measurable f) {t : Set Ω} (ht : MeasurableSet t) :
      ∫⁻ (a : α), ∫⁻ (ω : Ω) in t, f (a, ω)(MeasureTheory.Measure.condKernel ρ) aMeasureTheory.Measure.fst ρ = ∫⁻ (x : α × Ω) in Set.univ ×ˢ t, f xρ
      theorem ProbabilityTheory.integral_condKernel {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {ρ : MeasureTheory.Measure (α × Ω)} [MeasureTheory.IsFiniteMeasure ρ] {f : α × ΩE} (hf : MeasureTheory.Integrable f) :
      ∫ (a : α), ∫ (x : Ω), f (a, x)(MeasureTheory.Measure.condKernel ρ) aMeasureTheory.Measure.fst ρ = ∫ (ω : α × Ω), f ωρ
      theorem ProbabilityTheory.set_integral_condKernel {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {ρ : MeasureTheory.Measure (α × Ω)} [MeasureTheory.IsFiniteMeasure ρ] {f : α × ΩE} {s : Set α} (hs : MeasurableSet s) {t : Set Ω} (ht : MeasurableSet t) (hf : MeasureTheory.IntegrableOn f (s ×ˢ t)) :
      ∫ (a : α) in s, ∫ (ω : Ω) in t, f (a, ω)(MeasureTheory.Measure.condKernel ρ) aMeasureTheory.Measure.fst ρ = ∫ (x : α × Ω) in s ×ˢ t, f xρ
      theorem ProbabilityTheory.set_integral_condKernel_univ_right {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {ρ : MeasureTheory.Measure (α × Ω)} [MeasureTheory.IsFiniteMeasure ρ] {f : α × ΩE} {s : Set α} (hs : MeasurableSet s) (hf : MeasureTheory.IntegrableOn f (s ×ˢ Set.univ)) :
      ∫ (a : α) in s, ∫ (ω : Ω), f (a, ω)(MeasureTheory.Measure.condKernel ρ) aMeasureTheory.Measure.fst ρ = ∫ (x : α × Ω) in s ×ˢ Set.univ, f xρ
      theorem ProbabilityTheory.set_integral_condKernel_univ_left {α : Type u_1} {mα : MeasurableSpace α} {Ω : Type u_2} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {ρ : MeasureTheory.Measure (α × Ω)} [MeasureTheory.IsFiniteMeasure ρ] {f : α × ΩE} {t : Set Ω} (ht : MeasurableSet t) (hf : MeasureTheory.IntegrableOn f (Set.univ ×ˢ t)) :
      ∫ (a : α), ∫ (ω : Ω) in t, f (a, ω)(MeasureTheory.Measure.condKernel ρ) aMeasureTheory.Measure.fst ρ = ∫ (x : α × Ω) in Set.univ ×ˢ t, f xρ

      Uniqueness #

      This section will prove that the conditional kernel is unique almost everywhere.

      A s-finite kernel which satisfy the disintegration property of the given measure ρ is almost everywhere equal to the disintegration kernel of ρ when evaluated on a measurable set.

      This theorem in the case of finite kernels is weaker than eq_condKernel_of_measure_eq_compProd which asserts that the kernels are equal almost everywhere and not just on a given measurable set.

      A finite kernel which satisfies the disintegration property is almost everywhere equal to the disintegration kernel.

      Integrability #

      We place these lemmas in the MeasureTheory namespace to enable dot notation.

      theorem MeasureTheory.Integrable.condKernel_ae {α : Type u_1} {Ω : Type u_2} {F : Type u_4} {mα : MeasurableSpace α} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] [NormedAddCommGroup F] {ρ : MeasureTheory.Measure (α × Ω)} [MeasureTheory.IsFiniteMeasure ρ] {f : α × ΩF} (hf_int : MeasureTheory.Integrable f) :
      ∀ᵐ (a : α) ∂MeasureTheory.Measure.fst ρ, MeasureTheory.Integrable fun (ω : Ω) => f (a, ω)