Documentation

Mathlib.RepresentationTheory.Action.Limits

Categorical properties of Action V G #

We show:

F : C ⥤ Action V G preserves the limit of some K : J ⥤ C if if it does after postcomposing with the forgetful functor Action V G ⥤ V.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    F : C ⥤ Action V G preserves limits of some shape J if it does after postcomposing with the forgetful functor Action V G ⥤ V.

    Equations
    Instances For

      F : C ⥤ Action V G preserves limits of some size if it does after postcomposing with the forgetful functor Action V G ⥤ V.

      Equations
      Instances For

        F : C ⥤ Action V G preserves the colimit of some K : J ⥤ C if if it does after postcomposing with the forgetful functor Action V G ⥤ V.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          F : C ⥤ Action V G preserves colimits of some shape J if it does after postcomposing with the forgetful functor Action V G ⥤ V.

          Equations
          Instances For

            F : C ⥤ Action V G preserves colimits of some size if it does after postcomposing with the forgetful functor Action V G ⥤ V.

            Equations
            Instances For
              Equations
              • Action.instPreservesLimitsOfShapeActionInstCategoryActionForget = let_fun this := inferInstance; this
              Equations
              • Action.instPreservesColimitsOfShapeActionInstCategoryActionForget = let_fun this := inferInstance; this
              Equations
              • One or more equations did not get rendered due to their size.
              Equations
              • One or more equations did not get rendered due to their size.
              Equations
              • Action.instReflectsLimitsOfShapeActionInstCategoryActionForget = CategoryTheory.Limits.ReflectsLimitsOfShape.mk
              Equations
              • Action.instReflectsLimitsActionInstCategoryActionForget = CategoryTheory.Limits.ReflectsLimitsOfSize.mk
              Equations
              • One or more equations did not get rendered due to their size.
              Equations
              • Action.instReflectsColimitsOfShapeActionInstCategoryActionForget = CategoryTheory.Limits.ReflectsColimitsOfShape.mk
              Equations
              • Action.instReflectsColimitsActionInstCategoryActionForget = CategoryTheory.Limits.ReflectsColimitsOfSize.mk
              Equations
              • Action.instZeroHomActionToQuiverToCategoryStructInstCategoryAction = { zero := Action.Hom.mk 0 }
              @[simp]
              theorem Action.zero_hom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Limits.HasZeroMorphisms V] {X : Action V G} {Y : Action V G} :
              0.hom = 0
              Equations
              • Action.instHasZeroMorphismsActionInstCategoryAction = CategoryTheory.Limits.HasZeroMorphisms.mk
              Equations
              • Action.instPreadditiveActionInstCategoryAction = CategoryTheory.Preadditive.mk
              @[simp]
              theorem Action.neg_hom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {X : Action V G} {Y : Action V G} (f : X Y) :
              (-f).hom = -f.hom
              @[simp]
              theorem Action.add_hom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {X : Action V G} {Y : Action V G} (f : X Y) (g : X Y) :
              (f + g).hom = f.hom + g.hom
              @[simp]
              theorem Action.sum_hom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {X : Action V G} {Y : Action V G} {ι : Type u_1} (f : ι(X Y)) (s : Finset ι) :
              (Finset.sum s f).hom = Finset.sum s fun (i : ι) => (f i).hom
              Equations
              • Action.instLinearActionInstCategoryActionInstPreadditiveActionInstCategoryAction = CategoryTheory.Linear.mk
              @[simp]
              theorem Action.smul_hom {V : Type (u + 1)} [CategoryTheory.LargeCategory V] {G : MonCat} [CategoryTheory.Preadditive V] {R : Type u_1} [Semiring R] [CategoryTheory.Linear R V] {X : Action V G} {Y : Action V G} (r : R) (f : X Y) :
              (r f).hom = r f.hom

              Auxiliary construction for the Abelian (Action V G) instance.

              Equations
              Instances For
                Equations