Equations
- (_ : CategoryTheory.Limits.HasFiniteProducts (Action V G)) = (_ : CategoryTheory.Limits.HasFiniteProducts (Action V G))
Equations
- (_ : CategoryTheory.Limits.HasFiniteLimits (Action V G)) = (_ : CategoryTheory.Limits.HasFiniteLimits (Action V G))
Equations
- (_ : CategoryTheory.Limits.HasLimits (Action V G)) = (_ : CategoryTheory.Limits.HasLimitsOfSize.{u, u, u, u + 1} (Action V G))
If V
has limits of shape J
, so does Action V G
.
Equations
- (_ : CategoryTheory.Limits.HasLimitsOfShape J (Action V G)) = (_ : CategoryTheory.Limits.HasLimitsOfShape J (Action V G))
Equations
- (_ : CategoryTheory.Limits.HasFiniteCoproducts (Action V G)) = (_ : CategoryTheory.Limits.HasFiniteCoproducts (Action V G))
Equations
- (_ : CategoryTheory.Limits.HasFiniteColimits (Action V G)) = (_ : CategoryTheory.Limits.HasFiniteColimits (Action V G))
Equations
- (_ : CategoryTheory.Limits.HasColimits (Action V G)) = (_ : CategoryTheory.Limits.HasColimitsOfSize.{u, u, u, u + 1} (Action V G))
If V
has colimits of shape J
, so does Action V G
.
Equations
- (_ : CategoryTheory.Limits.HasColimitsOfShape J (Action V G)) = (_ : CategoryTheory.Limits.HasColimitsOfShape J (Action V G))
F : C ⥤ Action V G
preserves the limit of some K : J ⥤ C
if
if it does after postcomposing with the forgetful functor Action V G ⥤ V
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
F : C ⥤ Action V G
preserves limits of some shape J
if it does after postcomposing with the forgetful functor Action V G ⥤ V
.
Equations
- Action.preservesLimitsOfShapeOfPreserves F h = CategoryTheory.Limits.PreservesLimitsOfShape.mk
Instances For
F : C ⥤ Action V G
preserves limits of some size
if it does after postcomposing with the forgetful functor Action V G ⥤ V
.
Equations
- Action.preservesLimitsOfSizeOfPreserves F h = CategoryTheory.Limits.PreservesLimitsOfSize.mk
Instances For
F : C ⥤ Action V G
preserves the colimit of some K : J ⥤ C
if
if it does after postcomposing with the forgetful functor Action V G ⥤ V
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
F : C ⥤ Action V G
preserves colimits of some shape J
if it does after postcomposing with the forgetful functor Action V G ⥤ V
.
Equations
- Action.preservesColimitsOfShapeOfPreserves F h = CategoryTheory.Limits.PreservesColimitsOfShape.mk
Instances For
F : C ⥤ Action V G
preserves colimits of some size
if it does after postcomposing with the forgetful functor Action V G ⥤ V
.
Equations
- Action.preservesColimitsOfSizeOfPreserves F h = CategoryTheory.Limits.PreservesColimitsOfSize.mk
Instances For
Equations
- Action.instPreservesLimitsOfShapeActionInstCategoryActionForget = let_fun this := inferInstance; this
Equations
- Action.instPreservesColimitsOfShapeActionInstCategoryActionForget = let_fun this := inferInstance; this
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- Action.instReflectsLimitsOfShapeActionInstCategoryActionForget = CategoryTheory.Limits.ReflectsLimitsOfShape.mk
Equations
- Action.instReflectsLimitsActionInstCategoryActionForget = CategoryTheory.Limits.ReflectsLimitsOfSize.mk
Equations
- One or more equations did not get rendered due to their size.
Equations
- Action.instReflectsColimitsOfShapeActionInstCategoryActionForget = CategoryTheory.Limits.ReflectsColimitsOfShape.mk
Equations
- Action.instReflectsColimitsActionInstCategoryActionForget = CategoryTheory.Limits.ReflectsColimitsOfSize.mk
Equations
- Action.instZeroHomActionToQuiverToCategoryStructInstCategoryAction = { zero := Action.Hom.mk 0 }
Equations
- Action.instHasZeroMorphismsActionInstCategoryAction = CategoryTheory.Limits.HasZeroMorphisms.mk
Equations
Equations
- (_ : CategoryTheory.Functor.PreservesZeroMorphisms (CategoryTheory.forget₂ (Action V G) V)) = (_ : CategoryTheory.Functor.PreservesZeroMorphisms (CategoryTheory.forget₂ (Action V G) V))
Equations
- One or more equations did not get rendered due to their size.
Equations
- Action.instPreadditiveActionInstCategoryAction = CategoryTheory.Preadditive.mk
Equations
- (_ : CategoryTheory.Functor.Additive (Action.forget V G)) = (_ : CategoryTheory.Functor.Additive (Action.forget V G))
Equations
- (_ : CategoryTheory.Functor.Additive (CategoryTheory.forget₂ (Action V G) V)) = (_ : CategoryTheory.Functor.Additive (CategoryTheory.forget₂ (Action V G) V))
Equations
- (_ : CategoryTheory.Functor.Additive (Action.functorCategoryEquivalence V G).functor) = (_ : CategoryTheory.Functor.Additive (Action.functorCategoryEquivalence V G).functor)
Equations
- Action.instLinearActionInstCategoryActionInstPreadditiveActionInstCategoryAction = CategoryTheory.Linear.mk
Equations
- (_ : CategoryTheory.Functor.Linear R (Action.forget V G)) = (_ : CategoryTheory.Functor.Linear R (Action.forget V G))
Equations
- (_ : CategoryTheory.Functor.Linear R (CategoryTheory.forget₂ (Action V G) V)) = (_ : CategoryTheory.Functor.Linear R (CategoryTheory.forget₂ (Action V G) V))
Equations
- (_ : CategoryTheory.Functor.Linear R (Action.functorCategoryEquivalence V G).functor) = (_ : CategoryTheory.Functor.Linear R (Action.functorCategoryEquivalence V G).functor)
Equations
- (_ : CategoryTheory.Functor.Additive (Action.res V f)) = (_ : CategoryTheory.Functor.Additive (Action.res V f))
Equations
- (_ : CategoryTheory.Functor.Linear R (Action.res V f)) = (_ : CategoryTheory.Functor.Linear R (Action.res V f))
Auxiliary construction for the Abelian (Action V G)
instance.
Equations
- Action.abelianAux = (Action.functorCategoryEquivalence V G).trans (CategoryTheory.Equivalence.congrLeft CategoryTheory.ULift.equivalence)
Instances For
Equations
- Action.instAbelianActionInstCategoryAction = CategoryTheory.abelianOfEquivalence Action.abelianAux.functor
Equations
Equations
- (_ : CategoryTheory.Functor.Linear R (CategoryTheory.Functor.mapAction F G)) = (_ : CategoryTheory.Functor.Linear R (CategoryTheory.Functor.mapAction F G))