Documentation

Mathlib.RepresentationTheory.Character

Characters of representations #

This file introduces characters of representation and proves basic lemmas about how characters behave under various operations on representations.

TODO #

def FdRep.character {k : Type u} [Field k] {G : Type u} [Monoid G] (V : FdRep k G) (g : G) :
k

The character of a representation V : FdRep k G is the function associating to g : G the trace of the linear map V.ρ g.

Equations
Instances For
    theorem FdRep.char_mul_comm {k : Type u} [Field k] {G : Type u} [Monoid G] (V : FdRep k G) (g : G) (h : G) :
    @[simp]
    theorem FdRep.char_one {k : Type u} [Field k] {G : Type u} [Monoid G] (V : FdRep k G) :

    The character is multiplicative under the tensor product.

    @[simp]
    theorem FdRep.char_tensor' {k : Type u} [Field k] {G : Type u} [Monoid G] (V : FdRep k G) (W : FdRep k G) :
    FdRep.character (Action.FunctorCategoryEquivalence.inverse.toPrefunctor.obj (CategoryTheory.MonoidalCategory.tensorObj (Action.FunctorCategoryEquivalence.functor.toPrefunctor.obj V) (Action.FunctorCategoryEquivalence.functor.toPrefunctor.obj W))) = FdRep.character V * FdRep.character W
    theorem FdRep.char_iso {k : Type u} [Field k] {G : Type u} [Monoid G] {V : FdRep k G} {W : FdRep k G} (i : V W) :

    The character of isomorphic representations is the same.

    @[simp]
    theorem FdRep.char_conj {k : Type u} [Field k] {G : Type u} [Group G] (V : FdRep k G) (g : G) (h : G) :

    The character of a representation is constant on conjugacy classes.

    @[simp]
    theorem FdRep.char_dual {k : Type u} [Field k] {G : Type u} [Group G] (V : FdRep k G) (g : G) :
    @[simp]
    theorem FdRep.char_linHom {k : Type u} [Field k] {G : Type u} [Group G] (V : FdRep k G) (W : FdRep k G) (g : G) :
    theorem FdRep.char_orthonormal {k : Type u} [Field k] {G : GroupCat} [IsAlgClosed k] [Fintype G] [Invertible (Fintype.card G)] (V : FdRep k G) (W : FdRep k G) [CategoryTheory.Simple V] [CategoryTheory.Simple W] :
    ((Fintype.card G) Finset.sum Finset.univ fun (g : G) => FdRep.character V g * FdRep.character W g⁻¹) = if Nonempty (V W) then 1 else 0

    Orthogonality of characters for irreducible representations of finite group over an algebraically closed field whose characteristic doesn't divide the order of the group.