Internally-graded rings and algebras #
This file defines the typeclass GradedAlgebra 𝒜
, for working with an algebra A
that is
internally graded by a collection of submodules 𝒜 : ι → Submodule R A
.
See the docstring of that typeclass for more information.
Main definitions #
GradedRing 𝒜
: the typeclass, which is a combination ofSetLike.GradedMonoid
, andDirectSum.Decomposition 𝒜
.GradedAlgebra 𝒜
: A convenience alias forGradedRing
when𝒜
is a family of submodules.DirectSum.decomposeRingEquiv 𝒜 : A ≃ₐ[R] ⨁ i, 𝒜 i
, a more bundled version ofDirectSum.decompose 𝒜
.DirectSum.decomposeAlgEquiv 𝒜 : A ≃ₐ[R] ⨁ i, 𝒜 i
, a more bundled version ofDirectSum.decompose 𝒜
.GradedAlgebra.proj 𝒜 i
is the linear map fromA
to its degreei : ι
component, such thatproj 𝒜 i x = decompose 𝒜 x i
.
Implementation notes #
For now, we do not have internally-graded semirings and internally-graded rings; these can be
represented with 𝒜 : ι → Submodule ℕ A
and 𝒜 : ι → Submodule ℤ A
respectively, since all
Semiring
s are ℕ-algebras via algebraNat
, and all Ring
s are ℤ
-algebras via algebraInt
.
Tags #
graded algebra, graded ring, graded semiring, decomposition
An internally-graded R
-algebra A
is one that can be decomposed into a collection
of Submodule R A
s indexed by ι
such that the canonical map A → ⨁ i, 𝒜 i
is bijective and
respects multiplication, i.e. the product of an element of degree i
and an element of degree j
is an element of degree i + j
.
Note that the fact that A
is internally-graded, GradedAlgebra 𝒜
, implies an externally-graded
algebra structure DirectSum.GAlgebra R (fun i ↦ ↥(𝒜 i))
, which in turn makes available an
Algebra R (⨁ i, 𝒜 i)
instance.
Instances
If A
is graded by ι
with degree i
component 𝒜 i
, then it is isomorphic as
a ring to a direct sum of components.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The projection maps of a graded ring
Equations
- One or more equations did not get rendered due to their size.
Instances For
A special case of GradedRing
with σ = Submodule R A
. This is useful both because it
can avoid typeclass search, and because it provides a more concise name.
Equations
- GradedAlgebra 𝒜 = GradedRing 𝒜
Instances For
A helper to construct a GradedAlgebra
when the SetLike.GradedMonoid
structure is already
available. This makes the left_inv
condition easier to prove, and phrases the right_inv
condition in a way that allows custom @[ext]
lemmas to apply.
See note [reducible non-instances].
Equations
- GradedAlgebra.ofAlgHom 𝒜 decompose right_inv left_inv = GradedRing.mk
Instances For
If A
is graded by ι
with degree i
component 𝒜 i
, then it is isomorphic as
an algebra to a direct sum of components.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The projection maps of graded algebra
Equations
- GradedAlgebra.proj 𝒜 i = LinearMap.comp (Submodule.subtype (𝒜 i)) (LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(DirectSum.decomposeAlgEquiv 𝒜)))
Instances For
If A
is graded by a canonically ordered add monoid, then the projection map x ↦ x₀
is a ring
homomorphism.
Equations
- One or more equations did not get rendered due to their size.