Documentation

Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization

Homogeneous Localization #

Notation #

Main definitions and results #

This file constructs the subring of Aโ‚“ where the numerator and denominator have the same grading, i.e. {a/b โˆˆ Aโ‚“ | โˆƒ (i : ฮน), a โˆˆ ๐’œแตข โˆง b โˆˆ ๐’œแตข}.

However NumDenSameDeg ๐’œ x cannot have a ring structure for many reasons, for example if c is a NumDenSameDeg, then generally, c + (-c) is not necessarily 0 for degree reasons --- 0 is considered to have grade zero (see deg_zero) but c + (-c) has the same degree as c. To circumvent this, we quotient NumDenSameDeg ๐’œ x by the kernel of c โ†ฆ c.num / c.den.

References #

structure HomogeneousLocalization.NumDenSameDeg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : ฮน โ†’ Submodule R A) (x : Submonoid A) :
Type (max u_1 u_3)

Let x be a submonoid of A, then NumDenSameDeg ๐’œ x is a structure with a numerator and a denominator with same grading such that the denominator is contained in x.

  • deg : ฮน
  • num : โ†ฅ(๐’œ self.deg)
  • den : โ†ฅ(๐’œ self.deg)
  • den_mem : โ†‘self.den โˆˆ x
Instances For
    theorem HomogeneousLocalization.NumDenSameDeg.ext {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) {c1 : HomogeneousLocalization.NumDenSameDeg ๐’œ x} {c2 : HomogeneousLocalization.NumDenSameDeg ๐’œ x} (hdeg : c1.deg = c2.deg) (hnum : โ†‘c1.num = โ†‘c2.num) (hden : โ†‘c1.den = โ†‘c2.den) :
    c1 = c2
    instance HomogeneousLocalization.NumDenSameDeg.instOneNumDenSameDeg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_one {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    1.deg = 0
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_one {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    โ†‘1.num = 1
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_one {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    โ†‘1.den = 1
    instance HomogeneousLocalization.NumDenSameDeg.instZeroNumDenSameDeg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    Equations
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_zero {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    0.deg = 0
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_zero {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    0.num = 0
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_zero {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    โ†‘0.den = 1
    instance HomogeneousLocalization.NumDenSameDeg.instMulNumDenSameDeg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_mul {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) (c1 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (c2 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
    (c1 * c2).deg = c1.deg + c2.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_mul {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) (c1 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (c2 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
    โ†‘(c1 * c2).num = โ†‘c1.num * โ†‘c2.num
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_mul {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) (c1 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (c2 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
    โ†‘(c1 * c2).den = โ†‘c1.den * โ†‘c2.den
    instance HomogeneousLocalization.NumDenSameDeg.instAddNumDenSameDeg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_add {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) (c1 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (c2 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
    (c1 + c2).deg = c1.deg + c2.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_add {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) (c1 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (c2 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
    โ†‘(c1 + c2).num = โ†‘c1.den * โ†‘c2.num + โ†‘c2.den * โ†‘c1.num
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_add {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) (c1 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (c2 : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
    โ†‘(c1 + c2).den = โ†‘c1.den * โ†‘c2.den
    instance HomogeneousLocalization.NumDenSameDeg.instNegNumDenSameDeg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_neg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) (c : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
    (-c).deg = c.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_neg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) (c : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
    โ†‘(-c).num = -โ†‘c.num
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_neg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) (c : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
    โ†‘(-c).den = โ†‘c.den
    instance HomogeneousLocalization.NumDenSameDeg.instCommMonoidNumDenSameDeg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    Equations
    instance HomogeneousLocalization.NumDenSameDeg.instPowNumDenSameDegNat {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_pow {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) (c : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (n : โ„•) :
    (c ^ n).deg = n โ€ข c.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_pow {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) (c : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (n : โ„•) :
    โ†‘(c ^ n).num = โ†‘c.num ^ n
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_pow {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) (c : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (n : โ„•) :
    โ†‘(c ^ n).den = โ†‘c.den ^ n
    instance HomogeneousLocalization.NumDenSameDeg.instSMulNumDenSameDeg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) {ฮฑ : Type u_4} [SMul ฮฑ R] [SMul ฮฑ A] [IsScalarTower ฮฑ R A] :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_smul {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) {ฮฑ : Type u_4} [SMul ฮฑ R] [SMul ฮฑ A] [IsScalarTower ฮฑ R A] (c : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (m : ฮฑ) :
    (m โ€ข c).deg = c.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_smul {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) {ฮฑ : Type u_4} [SMul ฮฑ R] [SMul ฮฑ A] [IsScalarTower ฮฑ R A] (c : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (m : ฮฑ) :
    โ†‘(m โ€ข c).num = m โ€ข โ†‘c.num
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_smul {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) {ฮฑ : Type u_4} [SMul ฮฑ R] [SMul ฮฑ A] [IsScalarTower ฮฑ R A] (c : HomogeneousLocalization.NumDenSameDeg ๐’œ x) (m : ฮฑ) :
    โ†‘(m โ€ข c).den = โ†‘c.den
    def HomogeneousLocalization.NumDenSameDeg.embedding {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : ฮน โ†’ Submodule R A) (x : Submonoid A) (p : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :

    For x : prime ideal of A and any p : NumDenSameDeg ๐’œ x, or equivalent a numerator and a denominator of the same degree, we get an element p.num / p.den of Aโ‚“.

    Equations
    Instances For
      def HomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : ฮน โ†’ Submodule R A) (x : Submonoid A) :
      Type (max u_1 u_3)

      For x : prime ideal of A, HomogeneousLocalization ๐’œ x is NumDenSameDeg ๐’œ x modulo the kernel of embedding ๐’œ x. This is essentially the subring of Aโ‚“ where the numerator and denominator share the same grading.

      Equations
      Instances For
        def HomogeneousLocalization.val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (y : HomogeneousLocalization ๐’œ x) :

        View an element of HomogeneousLocalization ๐’œ x as an element of Aโ‚“ by forgetting that the numerator and denominator are of the same grading.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem HomogeneousLocalization.val_mk'' {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (i : HomogeneousLocalization.NumDenSameDeg ๐’œ x) :
          HomogeneousLocalization.val (Quotient.mk'' i) = Localization.mk โ†‘i.num { val := โ†‘i.den, property := (_ : โ†‘i.den โˆˆ x) }
          theorem HomogeneousLocalization.val_injective {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) :
          Function.Injective HomogeneousLocalization.val
          instance HomogeneousLocalization.hasPow {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
          Equations
          • One or more equations did not get rendered due to their size.
          instance HomogeneousLocalization.instSMulHomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) {ฮฑ : Type u_4} [SMul ฮฑ R] [SMul ฮฑ A] [IsScalarTower ฮฑ R A] [IsScalarTower ฮฑ A A] :
          SMul ฮฑ (HomogeneousLocalization ๐’œ x)
          Equations
          • One or more equations did not get rendered due to their size.
          @[simp]
          theorem HomogeneousLocalization.smul_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) {ฮฑ : Type u_4} [SMul ฮฑ R] [SMul ฮฑ A] [IsScalarTower ฮฑ R A] [IsScalarTower ฮฑ A A] (y : HomogeneousLocalization ๐’œ x) (n : ฮฑ) :
          instance HomogeneousLocalization.instNegHomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} (x : Submonoid A) :
          Equations
          • One or more equations did not get rendered due to their size.
          instance HomogeneousLocalization.instAddHomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
          Equations
          • One or more equations did not get rendered due to their size.
          instance HomogeneousLocalization.instSubHomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
          Equations
          instance HomogeneousLocalization.instMulHomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
          Equations
          • One or more equations did not get rendered due to their size.
          instance HomogeneousLocalization.instOneHomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
          Equations
          instance HomogeneousLocalization.instZeroHomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
          Equations
          theorem HomogeneousLocalization.zero_eq {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
          theorem HomogeneousLocalization.one_eq {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] (x : Submonoid A) :
          theorem HomogeneousLocalization.zero_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} :
          theorem HomogeneousLocalization.one_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} :
          @[simp]
          theorem HomogeneousLocalization.add_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} (y1 : HomogeneousLocalization ๐’œ x) (y2 : HomogeneousLocalization ๐’œ x) :
          @[simp]
          theorem HomogeneousLocalization.mul_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} (y1 : HomogeneousLocalization ๐’œ x) (y2 : HomogeneousLocalization ๐’œ x) :
          @[simp]
          theorem HomogeneousLocalization.neg_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (y : HomogeneousLocalization ๐’œ x) :
          @[simp]
          theorem HomogeneousLocalization.sub_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} (y1 : HomogeneousLocalization ๐’œ x) (y2 : HomogeneousLocalization ๐’œ x) :
          @[simp]
          theorem HomogeneousLocalization.pow_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} (y : HomogeneousLocalization ๐’œ x) (n : โ„•) :
          instance HomogeneousLocalization.instNatCastHomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} :
          Equations
          • HomogeneousLocalization.instNatCastHomogeneousLocalization = { natCast := Nat.unaryCast }
          instance HomogeneousLocalization.instIntCastHomogeneousLocalization {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} :
          Equations
          • HomogeneousLocalization.instIntCastHomogeneousLocalization = { intCast := Int.castDef }
          @[simp]
          theorem HomogeneousLocalization.natCast_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} (n : โ„•) :
          HomogeneousLocalization.val โ†‘n = โ†‘n
          @[simp]
          theorem HomogeneousLocalization.intCast_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} (n : โ„ค) :
          HomogeneousLocalization.val โ†‘n = โ†‘n
          instance HomogeneousLocalization.homogenousLocalizationCommRing {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} :
          Equations
          • One or more equations did not get rendered due to their size.
          instance HomogeneousLocalization.homogeneousLocalizationAlgebra {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} [GradedAlgebra ๐’œ] {x : Submonoid A} :
          Equations
          • One or more equations did not get rendered due to their size.
          def HomogeneousLocalization.num {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization ๐’œ x) :
          A

          Numerator of an element in HomogeneousLocalization x.

          Equations
          Instances For
            def HomogeneousLocalization.den {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization ๐’œ x) :
            A

            Denominator of an element in HomogeneousLocalization x.

            Equations
            Instances For
              def HomogeneousLocalization.deg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization ๐’œ x) :
              ฮน

              For an element in HomogeneousLocalization x, degree is the natural number i such that ๐’œ i contains both numerator and denominator.

              Equations
              Instances For
                theorem HomogeneousLocalization.den_mem {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization ๐’œ x) :
                theorem HomogeneousLocalization.num_mem_deg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization ๐’œ x) :
                theorem HomogeneousLocalization.den_mem_deg {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization ๐’œ x) :
                theorem HomogeneousLocalization.eq_num_div_den {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization ๐’œ x) :
                theorem HomogeneousLocalization.ext_iff_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : ฮน โ†’ Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization ๐’œ x) (g : HomogeneousLocalization ๐’œ x) :
                @[inline, reducible]
                abbrev HomogeneousLocalization.AtPrime {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : ฮน โ†’ Submodule R A) (๐”ญ : Ideal A) [Ideal.IsPrime ๐”ญ] :
                Type (max u_1 u_3)

                Localizing a ring homogeneously at a prime ideal.

                Equations
                Instances For
                  theorem HomogeneousLocalization.isUnit_iff_isUnit_val {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] (๐’œ : ฮน โ†’ Submodule R A) [GradedAlgebra ๐’œ] (๐”ญ : Ideal A) [Ideal.IsPrime ๐”ญ] (f : HomogeneousLocalization.AtPrime ๐’œ ๐”ญ) :
                  instance HomogeneousLocalization.instNontrivialAtPrime {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] (๐’œ : ฮน โ†’ Submodule R A) [GradedAlgebra ๐’œ] (๐”ญ : Ideal A) [Ideal.IsPrime ๐”ญ] :
                  Equations
                  instance HomogeneousLocalization.localRing {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [AddCommMonoid ฮน] [DecidableEq ฮน] [CommRing R] [CommRing A] [Algebra R A] (๐’œ : ฮน โ†’ Submodule R A) [GradedAlgebra ๐’œ] (๐”ญ : Ideal A) [Ideal.IsPrime ๐”ญ] :
                  Equations
                  @[inline, reducible]
                  abbrev HomogeneousLocalization.Away {ฮน : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : ฮน โ†’ Submodule R A) (f : A) :
                  Type (max u_1 u_3)

                  Localizing away from powers of f homogeneously.

                  Equations
                  Instances For