Documentation

Mathlib.RingTheory.GradedAlgebra.Radical

This file contains a proof that the radical of any homogeneous ideal is a homogeneous ideal

Main statements #

Implementation details #

Throughout this file, the indexing type ι of grading is assumed to be a LinearOrderedCancelAddCommMonoid. This might be stronger than necessary but cancelling property is strictly necessary; for a counterexample of how Ideal.IsHomogeneous.isPrime_iff fails for a non-cancellative set see Counterexamples/HomogeneousPrimeNotPrime.lean.

Tags #

homogeneous, radical

theorem Ideal.IsHomogeneous.isPrime_of_homogeneous_mem_or_mem {ι : Type u_1} {σ : Type u_2} {A : Type u_3} [CommRing A] [LinearOrderedCancelAddCommMonoid ι] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] {I : Ideal A} (hI : Ideal.IsHomogeneous 𝒜 I) (I_ne_top : I ) (homogeneous_mem_or_mem : ∀ {x y : A}, SetLike.Homogeneous 𝒜 xSetLike.Homogeneous 𝒜 yx * y Ix I y I) :
theorem Ideal.IsHomogeneous.isPrime_iff {ι : Type u_1} {σ : Type u_2} {A : Type u_3} [CommRing A] [LinearOrderedCancelAddCommMonoid ι] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] {I : Ideal A} (h : Ideal.IsHomogeneous 𝒜 I) :
Ideal.IsPrime I I ∀ {x y : A}, SetLike.Homogeneous 𝒜 xSetLike.Homogeneous 𝒜 yx * y Ix I y I
theorem Ideal.IsHomogeneous.radical_eq {ι : Type u_1} {σ : Type u_2} {A : Type u_3} [CommRing A] [LinearOrderedCancelAddCommMonoid ι] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] {I : Ideal A} (hI : Ideal.IsHomogeneous 𝒜 I) :
theorem Ideal.IsHomogeneous.radical {ι : Type u_1} {σ : Type u_2} {A : Type u_3} [CommRing A] [LinearOrderedCancelAddCommMonoid ι] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] {I : Ideal A} (h : Ideal.IsHomogeneous 𝒜 I) :
def HomogeneousIdeal.radical {ι : Type u_1} {σ : Type u_2} {A : Type u_3} [CommRing A] [LinearOrderedCancelAddCommMonoid ι] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] (I : HomogeneousIdeal 𝒜) :

The radical of a homogenous ideal, as another homogenous ideal.

Equations
Instances For