Identities between operations on the ring of Witt vectors #
In this file we derive common identities between the Frobenius and Verschiebung operators.
Main declarations #
- frobenius_verschiebung: the composition of Frobenius and Verschiebung is multiplication by- p
- verschiebung_mul_frobenius: the “projection formula”:- V(x * F y) = V x * y
- iterate_verschiebung_mul_coeff: an identity from [Haze09] 6.2
References #
- 
[Hazewinkel, Witt Vectors][Haze09] 
- 
[Commelin and Lewis, Formalizing the Ring of Witt Vectors][CL21] 
theorem
WittVector.frobenius_verschiebung
{p : ℕ}
{R : Type u_1}
[hp : Fact (Nat.Prime p)]
[CommRing R]
(x : WittVector p R)
 :
The composition of Frobenius and Verschiebung is multiplication by p.
theorem
WittVector.verschiebung_zmod
{p : ℕ}
[hp : Fact (Nat.Prime p)]
(x : WittVector p (ZMod p))
 :
Verschiebung is the same as multiplication by p on the ring of Witt vectors of ZMod p.
theorem
WittVector.p_nonzero
(p : ℕ)
(R : Type u_1)
[hp : Fact (Nat.Prime p)]
[CommRing R]
[Nontrivial R]
[CharP R p]
 :
↑p ≠ 0
theorem
WittVector.FractionRing.p_nonzero
(p : ℕ)
(R : Type u_1)
[hp : Fact (Nat.Prime p)]
[CommRing R]
[Nontrivial R]
[CharP R p]
 :
↑p ≠ 0
theorem
WittVector.verschiebung_mul_frobenius
{p : ℕ}
{R : Type u_1}
[hp : Fact (Nat.Prime p)]
[CommRing R]
(x : WittVector p R)
(y : WittVector p R)
 :
The “projection formula” for Frobenius and Verschiebung.
theorem
WittVector.verschiebung_frobenius_comm
{p : ℕ}
{R : Type u_1}
[hp : Fact (Nat.Prime p)]
[CommRing R]
[CharP R p]
 :
Function.Commute ⇑WittVector.verschiebung ⇑WittVector.frobenius
Iteration lemmas #
theorem
WittVector.iterate_verschiebung_coeff
{p : ℕ}
{R : Type u_1}
[hp : Fact (Nat.Prime p)]
[CommRing R]
(x : WittVector p R)
(n : ℕ)
(k : ℕ)
 :
((⇑WittVector.verschiebung)^[n] x).coeff (k + n) = x.coeff k
theorem
WittVector.iterate_verschiebung_mul_left
{p : ℕ}
{R : Type u_1}
[hp : Fact (Nat.Prime p)]
[CommRing R]
(x : WittVector p R)
(y : WittVector p R)
(i : ℕ)
 :
theorem
WittVector.iterate_verschiebung_mul
{p : ℕ}
{R : Type u_1}
[hp : Fact (Nat.Prime p)]
[CommRing R]
[CharP R p]
(x : WittVector p R)
(y : WittVector p R)
(i : ℕ)
(j : ℕ)
 :
theorem
WittVector.iterate_verschiebung_mul_coeff
{p : ℕ}
{R : Type u_1}
[hp : Fact (Nat.Prime p)]
[CommRing R]
[CharP R p]
(x : WittVector p R)
(y : WittVector p R)
(i : ℕ)
(j : ℕ)
 :
This is a slightly specialized form of [Hazewinkel, Witt Vectors][Haze09] 6.2 equation 5.