Locally convex topological modules #
A LocallyConvexSpace
is a topological semimodule over an ordered semiring in which any point
admits a neighborhood basis made of convex sets, or equivalently, in which convex neighborhoods of
a point form a neighborhood basis at that point.
In a module, this is equivalent to 0
satisfying such properties.
Main results #
locallyConvexSpace_iff_zero
: in a module, local convexity at zero gives local convexity everywhereWithSeminorms.locallyConvexSpace
: a topology generated by a family of seminorms is locally convex (inAnalysis.LocallyConvex.WithSeminorms
)NormedSpace.locallyConvexSpace
: a normed space is locally convex (inAnalysis.LocallyConvex.WithSeminorms
)
TODO #
- define a structure
LocallyConvexFilterBasis
, extendingModuleFilterBasis
, for filter bases generating a locally convex topology
class
LocallyConvexSpace
(𝕜 : Type u_1)
(E : Type u_2)
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
[TopologicalSpace E]
:
A LocallyConvexSpace
is a topological semimodule over an ordered semiring in which convex
neighborhoods of a point form a neighborhood basis at that point.
Instances
theorem
locallyConvexSpace_iff
(𝕜 : Type u_1)
(E : Type u_2)
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
[TopologicalSpace E]
:
LocallyConvexSpace 𝕜 E ↔ ∀ (x : E), Filter.HasBasis (nhds x) (fun (s : Set E) => s ∈ nhds x ∧ Convex 𝕜 s) id
theorem
LocallyConvexSpace.ofBases
(𝕜 : Type u_1)
(E : Type u_2)
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
[TopologicalSpace E]
{ι : Type u_3}
(b : E → ι → Set E)
(p : E → ι → Prop)
(hbasis : ∀ (x : E), Filter.HasBasis (nhds x) (p x) (b x))
(hconvex : ∀ (x : E) (i : ι), p x i → Convex 𝕜 (b x i))
:
theorem
LocallyConvexSpace.convex_basis_zero
(𝕜 : Type u_1)
(E : Type u_2)
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
[TopologicalSpace E]
[LocallyConvexSpace 𝕜 E]
:
theorem
locallyConvexSpace_iff_exists_convex_subset
(𝕜 : Type u_1)
(E : Type u_2)
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
[TopologicalSpace E]
:
theorem
LocallyConvexSpace.ofBasisZero
(𝕜 : Type u_1)
(E : Type u_2)
[OrderedSemiring 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[TopologicalAddGroup E]
{ι : Type u_3}
(b : ι → Set E)
(p : ι → Prop)
(hbasis : Filter.HasBasis (nhds 0) p b)
(hconvex : ∀ (i : ι), p i → Convex 𝕜 (b i))
:
theorem
locallyConvexSpace_iff_zero
(𝕜 : Type u_1)
(E : Type u_2)
[OrderedSemiring 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[TopologicalAddGroup E]
:
LocallyConvexSpace 𝕜 E ↔ Filter.HasBasis (nhds 0) (fun (s : Set E) => s ∈ nhds 0 ∧ Convex 𝕜 s) id
theorem
locallyConvexSpace_iff_exists_convex_subset_zero
(𝕜 : Type u_1)
(E : Type u_2)
[OrderedSemiring 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[TopologicalAddGroup E]
:
instance
LocallyConvexSpace.toLocallyConnectedSpace
(E : Type u_2)
[AddCommGroup E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[Module ℝ E]
[ContinuousSMul ℝ E]
[LocallyConvexSpace ℝ E]
:
Equations
- (_ : LocallyConnectedSpace E) = (_ : LocallyConnectedSpace E)
theorem
LocallyConvexSpace.convex_open_basis_zero
(𝕜 : Type u_1)
(E : Type u_2)
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul 𝕜 E]
[LocallyConvexSpace 𝕜 E]
:
theorem
Disjoint.exists_open_convexes
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul 𝕜 E]
[LocallyConvexSpace 𝕜 E]
{s : Set E}
{t : Set E}
(disj : Disjoint s t)
(hs₁ : Convex 𝕜 s)
(hs₂ : IsCompact s)
(ht₁ : Convex 𝕜 t)
(ht₂ : IsClosed t)
:
In a locally convex space, if s
, t
are disjoint convex sets, s
is compact and t
is
closed, then we can find open disjoint convex sets containing them.
theorem
locallyConvexSpace_sInf
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{ts : Set (TopologicalSpace E)}
(h : ∀ t ∈ ts, LocallyConvexSpace 𝕜 E)
:
theorem
locallyConvexSpace_iInf
{ι : Sort u_1}
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{ts' : ι → TopologicalSpace E}
(h' : ∀ (i : ι), LocallyConvexSpace 𝕜 E)
:
theorem
locallyConvexSpace_inf
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{t₁ : TopologicalSpace E}
{t₂ : TopologicalSpace E}
(h₁ : LocallyConvexSpace 𝕜 E)
(h₂ : LocallyConvexSpace 𝕜 E)
:
theorem
locallyConvexSpace_induced
{𝕜 : Type u_2}
{E : Type u_3}
{F : Type u_4}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
[AddCommMonoid F]
[Module 𝕜 F]
{t : TopologicalSpace F}
[LocallyConvexSpace 𝕜 F]
(f : E →ₗ[𝕜] F)
:
instance
Pi.locallyConvexSpace
{𝕜 : Type u_2}
[OrderedSemiring 𝕜]
{ι : Type u_5}
{X : ι → Type u_6}
[(i : ι) → AddCommMonoid (X i)]
[(i : ι) → TopologicalSpace (X i)]
[(i : ι) → Module 𝕜 (X i)]
[∀ (i : ι), LocallyConvexSpace 𝕜 (X i)]
:
LocallyConvexSpace 𝕜 ((i : ι) → X i)
Equations
- (_ : LocallyConvexSpace 𝕜 ((i : ι) → X i)) = (_ : LocallyConvexSpace 𝕜 ((i : ι) → X i))
instance
Prod.locallyConvexSpace
{𝕜 : Type u_2}
{E : Type u_3}
{F : Type u_4}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
[AddCommMonoid F]
[Module 𝕜 F]
[TopologicalSpace E]
[TopologicalSpace F]
[LocallyConvexSpace 𝕜 E]
[LocallyConvexSpace 𝕜 F]
:
LocallyConvexSpace 𝕜 (E × F)
Equations
- (_ : LocallyConvexSpace 𝕜 (E × F)) = (_ : LocallyConvexSpace 𝕜 (E × F))