functors between categories of sheaves #
Show that the pushforward of a sheaf is a sheaf, and define the pushforward functor from the category of C-valued sheaves on X to that of sheaves on Y, given a continuous map between topological spaces X and Y.
Main definitions #
TopCat.Sheaf.pushforward
: The pushforward functor between sheaf categories over topological spaces.TopCat.Sheaf.pullback
: The pullback functor between sheaf categories over topological spaces.TopCat.Sheaf.pullbackPushforwardAdjunction
: The adjunction between pullback and pushforward for sheaves on topological spaces.
theorem
TopCat.Sheaf.pushforward_sheaf_of_sheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X : TopCat}
{Y : TopCat}
(f : X ⟶ Y)
{F : TopCat.Presheaf C X}
(h : TopCat.Presheaf.IsSheaf F)
:
TopCat.Presheaf.IsSheaf (f _* F)
The pushforward of a sheaf (by a continuous map) is a sheaf.
def
TopCat.Sheaf.pushforward
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{X : TopCat}
{Y : TopCat}
(f : X ⟶ Y)
:
CategoryTheory.Functor (TopCat.Sheaf C X) (TopCat.Sheaf C Y)
The pushforward functor.
Equations
Instances For
theorem
TopCat.Sheaf.pushforward_forget
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{X : TopCat}
{Y : TopCat}
(f : X ⟶ Y)
:
def
TopCat.Sheaf.pushforwardForgetIso
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{X : TopCat}
{Y : TopCat}
(f : X ⟶ Y)
:
Pushforward of sheaves is isomorphic (actually definitionally equal) to pushforward of presheaves.
Equations
Instances For
@[simp]
theorem
TopCat.Sheaf.pushforward_obj_val
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X : TopCat}
{Y : TopCat}
(f : X ⟶ Y)
(F : TopCat.Sheaf C X)
:
((TopCat.Sheaf.pushforward C f).toPrefunctor.obj F).val = f _* F.val
@[simp]
theorem
TopCat.Sheaf.pushforward_map
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X : TopCat}
{Y : TopCat}
(f : X ⟶ Y)
{F : TopCat.Sheaf C X}
{F' : TopCat.Sheaf C X}
(α : F ⟶ F')
:
((TopCat.Sheaf.pushforward C f).toPrefunctor.map α).val = (TopCat.Presheaf.pushforward C f).toPrefunctor.map α.val
def
TopCat.Sheaf.pullback
{X : TopCat}
{Y : TopCat}
(A : Type u_1)
[CategoryTheory.Category.{w, u_1} A]
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
(f : X ⟶ Y)
:
CategoryTheory.Functor (TopCat.Sheaf A Y) (TopCat.Sheaf A X)
The pullback functor.
Equations
Instances For
theorem
TopCat.Sheaf.pullback_eq
{X : TopCat}
{Y : TopCat}
(A : Type u_1)
[CategoryTheory.Category.{w, u_1} A]
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
(f : X ⟶ Y)
:
def
TopCat.Sheaf.pullbackIso
{X : TopCat}
{Y : TopCat}
(A : Type u_1)
[CategoryTheory.Category.{w, u_1} A]
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
(f : X ⟶ Y)
:
The pullback of a sheaf is isomorphic (actually definitionally equal) to the sheafification of the pullback as a presheaf.
Equations
Instances For
def
TopCat.Sheaf.pullbackPushforwardAdjunction
{X : TopCat}
{Y : TopCat}
(A : Type u_1)
[CategoryTheory.Category.{w, u_1} A]
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
(f : X ⟶ Y)
:
The adjunction between pullback and pushforward for sheaves on topological spaces.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
TopCat.Sheaf.instIsLeftAdjointSheafSheafCatPullback
{X : TopCat}
{Y : TopCat}
(f : X ⟶ Y)
(A : Type u_1)
[CategoryTheory.Category.{w, u_1} A]
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
:
Equations
- TopCat.Sheaf.instIsLeftAdjointSheafSheafCatPullback f A = { right := TopCat.Sheaf.pushforward A f, adj := TopCat.Sheaf.pullbackPushforwardAdjunction A f }
instance
TopCat.Sheaf.instIsRightAdjointSheafSheafCatPushforward
{X : TopCat}
{Y : TopCat}
(f : X ⟶ Y)
(A : Type u_1)
[CategoryTheory.Category.{w, u_1} A]
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
:
Equations
- TopCat.Sheaf.instIsRightAdjointSheafSheafCatPushforward f A = { left := TopCat.Sheaf.pullback A f, adj := TopCat.Sheaf.pullbackPushforwardAdjunction A f }